Week 12: Matrices

1.

0 Murri 1.0 point 0 penalty Single Shuffe
Calculate the matrix product:

$$
\left[\begin{array}{lll}
1 & 2 & 9 \\
3 & 4 & 5 \\
6 & 7 & 8
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]=?
$$

(a) $\left[\begin{array}{ccc}-6 & 10 & 8 \\ 2 & 6 & 4 \\ 5 & 9 & 7\end{array}\right]$ (100\%)
(b) $\left[\begin{array}{ccc}-6 & 9 & 8 \\ 2 & 6 & 4 \\ 5 & 9 & 8\end{array}\right]$
(c) $\left[\begin{array}{ccc}-6 & 10 & 8 \\ 2 & 5 & 4 \\ 5 & 9 & 7\end{array}\right]$
(d) $\left[\begin{array}{ccc}-6 & 9 & 8 \\ 2 & 5 & 4 \\ 5 & 9 & 8\end{array}\right]$
2.
M Murti 1.0 point 0 penalty Single Shuffe

Let

$$
\mathcal{R}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

Which is the inverse of \mathcal{R}
(a) $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right](100 \%)$
(b) $\left[\begin{array}{cc}-\cos \theta & \sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right]$
(c) $\left[\begin{array}{cc}-\cos \theta & -\sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$
(d) $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$

Recall that $A^{-1} \cdot A=\mathrm{id}$ with id being the identity matrix. We have that

$$
\begin{gathered}
{\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \cdot\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]=} \\
=\left[\begin{array}{cc}
\cos ^{2} \theta+\sin ^{2} \theta & \cos \theta \sin \theta-\cos \theta \sin \theta \\
\sin \theta \cos \theta-\sin \theta \cos \theta & \sin ^{2} \theta+\cos ^{2} \theta
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{gathered}
$$

3.

1 Multi 1.0 point 0 penalty Single Shuffe

Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] B=\left[\begin{array}{ll}
2 & 0 \\
2 & 2
\end{array}\right] C=\left[\begin{array}{ll}
3 & 3 \\
0 & 3
\end{array}\right]
$$

Calculate $A \cdot B \cdot C$
(a) $\left[\begin{array}{ll}12 & 18 \\ 12 & 18\end{array}\right](100 \%)$
(b) $\left[\begin{array}{cc}24 & 24 \\ 2 & 6\end{array}\right]$
(c) $\left[\begin{array}{ll}6 & 6 \\ 6 & 6\end{array}\right]$
(d) $\left[\begin{array}{cc}6 & 6 \\ 12 & 18\end{array}\right]$

$$
A \cdot B \cdot C=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
6 & 6 \\
6 & 12
\end{array}\right]=\left[\begin{array}{ll}
12 & 18 \\
12 & 18
\end{array}\right]
$$

4.

| MULTI 1.0 point | 0 penalty Single Shuffle |
| :--- | :--- | :--- |

Let

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \quad B=\left[\begin{array}{cc}
99 & 0 \\
99 & 99 \\
99 & 0 \\
99 & 99
\end{array}\right] C=\left[\begin{array}{l}
3 \\
0 \\
3
\end{array}\right]
$$

Which of the following is a valid matrix multiplication?
(a) $B \cdot A^{T} \cdot C(100 \%)$
(b) $A \cdot B \cdot C$
(c) $A^{T} \cdot B^{T} \cdot C$
(d) $C^{T} \cdot B^{T} \cdot A^{T}$

We can simply analyse the dimensions of the matrices. Then $B \cdot A^{T} \cdot C$ reads

$$
(5 \times 2) \cdot(3 \times 2)^{T} \cdot(3 \times 1)=(5 \times 2) \cdot(2 \times 3) \cdot(3 \times 1)
$$

And thus the dimensions match and the output is a (5×1) matrix
5.

Which of the following is equivalent to $(A \cdot B \cdot C)^{T}$
(a) $C^{T} \cdot B^{T} \cdot A^{T}(100 \%)$
(b) $B^{T} \cdot C^{T} \cdot A^{T}$
(c) $A^{T} \cdot B^{T} \cdot C^{T}$
(d) $C^{T} \cdot B^{T} \cdot A^{T}$

$$
(A \cdot B \cdot C)^{T}=(A \cdot(B \cdot C))^{T}=(B \cdot C)^{T} \cdot A^{T}=C^{T} \cdot B^{T} \cdot A^{T}
$$

6.

MULTI 1.0 point	0 penalty Single Shuffle

Let A be a (3×4) matrix, and B be a matrix such that $A^{T} \cdot B$ and $B \cdot A^{T}$ are both defined. What are the dimensions of B
(a) $(3 \times 4)(100 \%)$
(b) (3×3)
(c) (4×4)
(d) (4×3)

If A is (3×4), then A^{T} is (4×3). Then if B is $(3 \times 4), A^{T} \cdot B$ and $B \cdot A^{T}$ are well defined.
7.
0 Nutrit 1.0 point 0 penalty Single Shuffe

Solve the following system of linear equations:

$$
\begin{aligned}
x_{1}+3 x_{2}-5 x_{3} & =4 \\
x_{1}+4 x_{2}-8 x_{3} & =7 \\
-3 x_{1}-7 x_{2}+9 x_{3} & =-6
\end{aligned}
$$

(a)

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-5 \\
3 \\
0
\end{array}\right]+\lambda\left[\begin{array}{c}
4 \\
-3 \\
-1
\end{array}\right]
$$

(100\%)
(b)

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-10 \\
6 \\
0
\end{array}\right]+\lambda\left[\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-10 \\
6 \\
0
\end{array}\right]+\lambda\left[\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right]
$$

(d)

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-5 \\
3 \\
0
\end{array}\right]+\lambda\left[\begin{array}{c}
4 \\
-3 \\
1
\end{array}\right]
$$

Write out the augmented matrix:

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
1 & 3 & -5 & 4 \\
1 & 4 & -8 & 7 \\
-3 & -7 & 9 & -6
\end{array}\right] \xrightarrow[R 2+3 R 1 \rightarrow R 3]{R 2-R 1 \rightarrow R 2}\left[\begin{array}{lll|l}
1 & 3 & -5 & 4 \\
0 & 1 & -3 & 3 \\
0 & 2 & -6 & 6
\end{array}\right] \xrightarrow[R 3-2 R 2 \rightarrow R 3]{R 1-3 R 2 \rightarrow R 1}\left[\begin{array}{ccc|c}
1 & 0 & 4 & -5 \\
0 & 1 & -3 & 3 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow} \\
\Rightarrow x=\left[\begin{array}{c}
-5 \\
3 \\
0
\end{array}\right]+\lambda\left[\begin{array}{c}
4 \\
-3 \\
-1
\end{array}\right]
\end{gathered}
$$

8.

MULTI 1.0 point 0 penalty Single Shuffle

Find α such that following system of linear equations has no solutions:

$$
\begin{aligned}
x_{1}+\alpha x_{2} & =1 \\
x_{1}-x_{2}+3 x_{3} & =-1 \\
2 x_{1}-2 x_{2}+\alpha x_{3} & =-2
\end{aligned}
$$

(a) $\alpha=-1(100 \%)$
(b) $\alpha=6$
(c) $\alpha=3$
(d) $\alpha=1$

Augmented matrix:

$$
\left[\begin{array}{ccc|c}
1 & \alpha & 0 & 1 \\
1 & -1 & 3 & -1 \\
2 & -2 & \alpha & -2
\end{array}\right] \xrightarrow[\substack{R 1-R 2 \rightarrow R 2 \\
R 3-2 R 1 \rightarrow R 3}]{R 2 \rightarrow R 1}\left[\begin{array}{ccc|c}
1 & -1 & 3 & -1 \\
0 & \alpha+1 & -3 & 2 \\
0 & 0 & \alpha-6 & 0
\end{array}\right]
$$

The matrix is full rank unless $\alpha=-1$ or 6 . When $\alpha=-1$ the last 2 equations are $-3 x_{2}=2$ and $-7 x_{3}=0 \Rightarrow$ the system has no solutions. When $\alpha=6$ the augmented matrix becomes:

$$
\left[\begin{array}{ccc|c}
1 & -1 & 3 & -1 \\
0 & 7 & -3 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

\Rightarrow the solution is not unique
9.

1 NuITt 1.0 point 0 penalty Single Shuffe
Which of the following is true for Homogeneous systems of Linear Equations?
(a) If \vec{a} and \vec{b} are both solutions, then $\vec{a}+\vec{b}$ is also a solution (100%)
(b) The system might not have a solution
(c) If \vec{a} is a solution, $\exists k \in \mathbb{R}$ such that $k \vec{a}$ is not a solution
(d) We can always find a solution \vec{a} such that all its components a_{i} are positive

If we have \vec{a} and \vec{b} be solutions of $A \vec{x}=0$, then we have

$$
A(\vec{a}+\vec{b})=A \vec{a}+A \vec{b}=0+0=0
$$

Where the first equality comes from the linearity of A
10.

Let \vec{a} and \vec{b} be the solution to a system of linear equations $A \vec{x}=\vec{v}$. When is $\vec{a}+\vec{b}$ also a solution?
(a) When $\vec{v}=0(100 \%)$
(b) When $\vec{v} \neq 0$
(c) Always
(d) Never

$$
A(\vec{a}+\vec{b})=A \vec{a}+A \vec{b}=2 \vec{v}
$$

And $2 \vec{v}=\vec{v} \Rightarrow \vec{v}=0$
Total of marks: 10

