Week 12: Matrices

1.

2.

Shuffle 0 penalty MULTI 1.0 point Single Calculate the matrix product: $\begin{bmatrix} 1 & 2 & 9 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix} = ?$ (a) $\begin{bmatrix} -6 & 10 & 8 \\ 2 & 6 & 4 \\ 5 & 9 & 7 \end{bmatrix}$ (100%) (b) $\begin{bmatrix} -6 & 9 & 8 \\ 2 & 6 & 4 \\ 5 & 9 & 8 \end{bmatrix}$ (c) $\begin{bmatrix} -6 & 10 & 8 \\ 2 & 5 & 4 \\ 5 & 9 & 7 \end{bmatrix}$ (d) $\begin{bmatrix} -6 & 9 & 8 \\ 2 & 5 & 4 \\ 5 & 9 & 8 \end{bmatrix}$ MULTI 1.0 point 0 penalty Single Shuffle Let $\mathcal{R} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$ Which is the inverse of \mathcal{R} $\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} (100\%)$ (a) $-\cos\theta \quad \sin\theta$ $\begin{bmatrix} -\cos\theta & \sin\theta \\ -\sin\theta & -\cos\theta \end{bmatrix} \\ \begin{bmatrix} -\cos\theta & -\sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix} \\ \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$ (b) (c) (d) Recall that $A^{-1} \cdot A = id$ with id being the identity matrix. We have that $\begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \cdot \begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} =$ $= \begin{bmatrix} \cos^2 \theta + \sin^2 \theta & \cos \theta \sin \theta - \cos \theta \sin \theta \\ \sin \theta \cos \theta - \sin \theta \cos \theta & \sin^2 \theta + \cos^2 \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

3.

4.

$$\begin{array}{c} \hline \texttt{WURT} & \texttt{i.0 point} & \texttt{Openalty} & \texttt{Single} & \texttt{Shuffle} \\ \hline \texttt{Let} & A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} B = \begin{bmatrix} 2 & 0 \\ 2 & 2 \end{bmatrix} C = \begin{bmatrix} 3 & 3 \\ 0 & 3 \end{bmatrix} \\ \texttt{Calculate} \ A \cdot B \cdot C & \texttt{(a)} & \begin{bmatrix} 12 & 18 \\ 12 & 18 \\ 12 & 18 \\ \end{bmatrix} & \texttt{(100\%)} \\ \texttt{(b)} & \begin{bmatrix} 24 & 24 \\ 2 & 6 \\ 6 & 6 \\ \end{bmatrix} \\ \texttt{(c)} & \begin{bmatrix} 6 & 6 \\ 6 & 6 \\ 12 & 18 \\ \end{bmatrix} \\ \hline & A \cdot B \cdot C = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ \end{bmatrix} \cdot \begin{bmatrix} 6 & 6 \\ 6 & 12 \\ \end{bmatrix} = \begin{bmatrix} 12 & 18 \\ 12 & 18 \\ \end{bmatrix} \\ \hline & \texttt{WIRT} & \texttt{(10 point)} & \texttt{Openalty} & \texttt{Single} & \texttt{Shuffle} \\ \texttt{Let} & A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ \end{bmatrix} B = \begin{bmatrix} 99 & 0 \\ 99 & 99 \\ 99 & 0 \\ 99 & 99 \\ 99 & 0 \\ 99 & 99 \\ \end{bmatrix} C = \begin{bmatrix} 3 \\ 0 \\ 3 \\ \end{bmatrix} \\ \end{aligned}$$
Which of the following is a valid matrix multiplication? \\ \texttt{(a)} \ B \cdot A^T \cdot C & \texttt{(100\%)} \\ \texttt{(b)} \ A \cdot B \cdot C \\ \texttt{(c)} \ A^T \cdot B^T \cdot C \\ \texttt{(d)} \ C^T \cdot B^T \cdot A^T \\ \hline \end{aligned}
We can simply analyse the dimensions of the matrices. Then $B \cdot A^T \cdot C$ reads

 $(5 \times 2) \cdot (3 \times 2)^T \cdot (3 \times 1) = (5 \times 2) \cdot (2 \times 3) \cdot (3 \times 1)$

And thus the dimensions match and the output is a (5×1) matrix

5.

MULTI 1.0 point 0 penalty Single Shuffle

Which of the following is equivalent to $(A \cdot B \cdot C)^T$

(a) $C^T \cdot B^T \cdot A^T$ (100%) (b) $B^T \cdot C^T \cdot A^T$ (c) $A^T \cdot B^T \cdot C^T$ (d) $C^T \cdot B^T \cdot A^T$

$$(A \cdot B \cdot C)^T = (A \cdot (B \cdot C))^T = (B \cdot C)^T \cdot A^T = C^T \cdot B^T \cdot A^T$$

6.

 MULTI
 1.0 point
 0 penalty
 Single
 Shuffle

Let A be a (3×4) matrix, and B be a matrix such that $A^T \cdot B$ and $B \cdot A^T$ are both defined. What are the dimensions of B

(a) $(3 \times 4) (100\%)$ (b) (3×3) (c) (4×4) (d) (4×3)

If A is (3×4) , then A^T is (4×3) . Then if B is (3×4) , $A^T \cdot B$ and $B \cdot A^T$ are well defined.

7.

 MULTI
 1.0 point
 0 penalty
 Single
 Shuffle

Solve the following system of linear equations:

$$x_1 + 3 x_2 - 5 x_3 = 4$$

$$x_1 + 4 x_2 - 8 x_3 = 7$$

$$-3 x_1 - 7 x_2 + 9 x_3 = -6$$

(a)

Γ	x_1		$\left[-5\right]$		[4]
	x_2	=	3	$+ \lambda$	$\left -3\right $
	x_3		0		$\begin{bmatrix} -1 \end{bmatrix}$
_					

	(100%)
(b)	

$$\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} -10\\ 6\\ 0 \end{bmatrix} + \lambda \begin{bmatrix} 2\\ -3\\ -1 \end{bmatrix}$$
(c)
$$\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} -10\\ 6\\ 0 \end{bmatrix} + \lambda \begin{bmatrix} 2\\ 3\\ -1 \end{bmatrix}$$
(d)
$$\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} -5\\ 3\\ 0 \end{bmatrix} + \lambda \begin{bmatrix} 4\\ -3\\ 1 \end{bmatrix}$$

8.

 MULTI
 1.0 point
 0 penalty
 Single
 Shuffle

Find α such that following system of linear equations has no solutions:

$$x_1 + \alpha x_2 = 1$$

$$x_1 - x_2 + 3 x_3 = -1$$

$$2 x_1 - 2 x_2 + \alpha x_3 = -2$$

(a) $\alpha = -1 (100\%)$ (b) $\alpha = 6$ (c) $\alpha = 3$ (d) $\alpha = 1$

Augmented matrix:

$$\begin{bmatrix} 1 & \alpha & 0 & | & 1 \\ 1 & -1 & 3 & | & -1 \\ 2 & -2 & \alpha & | & -2 \end{bmatrix} \xrightarrow[R3-2R1 \to R3]{R2 \to R1 \to R3} \begin{bmatrix} 1 & -1 & 3 & | & -1 \\ 0 & \alpha + 1 & -3 & | & 2 \\ 0 & 0 & \alpha - 6 & | & 0 \end{bmatrix}$$

The matrix is full rank unless $\alpha = -1$ or 6. When $\alpha = -1$ the last 2 equations are $-3x_2 = 2$ and $-7x_3 = 0 \Rightarrow$ the system has no solutions. When $\alpha = 6$ the augmented matrix becomes:

$$\begin{bmatrix} 1 & -1 & 3 & -1 \\ 0 & 7 & -3 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 \Rightarrow the solution is not unique

9.

 MULTI
 1.0 point
 0 penalty
 Single
 Shuffle

Which of the following is true for Homogeneous systems of Linear Equations?

- (a) If \vec{a} and \vec{b} are both solutions, then $\vec{a} + \vec{b}$ is also a solution (100%)
- (b) The system might not have a solution
- (c) If \vec{a} is a solution, $\exists k \in \mathbb{R}$ such that $k\vec{a}$ is not a solution
- (d) We can always find a solution \vec{a} such that all its components a_i are positive

If we have \vec{a} and \vec{b} be solutions of $A\vec{x} = 0$, then we have

$$A(\vec{a} + \vec{b}) = A\vec{a} + A\vec{b} = 0 + 0 = 0$$

Where the first equality comes from the linearity of A

10.

 MULTI
 1.0 point
 0 penalty
 Single
 Shuffle

Let \vec{a} and \vec{b} be the solution to a system of linear equations $A\vec{x} = \vec{v}$. When is $\vec{a} + \vec{b}$ also a solution?

- (a) When $\vec{v} = 0$ (100%)
- (b) When $\vec{v} \neq 0$
- (c) Always
- (d) Never

$$A(\vec{a} + \vec{b}) = A\vec{a} + A\vec{b} = 2\vec{v}$$

And $2\vec{v} = \vec{v} \Rightarrow \vec{v} = 0$

Total of marks: 10