Week 13: More Matrices

1. mviri single

Find the inverse of $A=\left[\begin{array}{ccc}0 & \frac{1}{2} & -\frac{1}{2} \\ 1 & 0 & 1 \\ 2 & \frac{1}{2} & 1\end{array}\right]$.
(a) $A^{-1}=\left[\begin{array}{ccc}-2 & -3 & 2 \\ 4 & 4 & 2 \\ 2 & 4 & -2\end{array}\right]$
(b) $A^{-1}=\left[\begin{array}{ccc}-2 & -3 & 2 \\ 4 & 4 & 2 \\ 2 & -4 & -2\end{array}\right]$
(c) the inverse does not exist
(d) $A^{-1}=\left[\begin{array}{ccc}-2 & -3 & 2 \\ 4 & 4 & -2 \\ 2 & 4 & -2\end{array}\right]$
2. Nutri single

Find the inverse of $A=\left[\begin{array}{ccc}3.5 & -1 & 0.5 \\ 10 & -3 & 2 \\ 2.5 & -1 & 1.5\end{array}\right]$.
(a) $A^{-1}=\left[\begin{array}{ccc}0 & 1 & 1 \\ 2 & -1 & -2 \\ -1 & 1 & -2\end{array}\right]$
(b) $A^{-1}=\left[\begin{array}{ccc}0 & 1 & 1 \\ 2 & -1 & -2 \\ 1 & 1 & 2\end{array}\right]$
(c) the inverse does not exist
(d) $A^{-1}=\left[\begin{array}{ccc}0 & 1 & 1 \\ 2 & -1 & -2 \\ 1 & 1 & -2\end{array}\right]$
3. Nutri Single

Find the inverse of $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.
(a) $A^{-1}=\left[\begin{array}{ccc}0.5 & -0.5 & 0.5 \\ -0.5 & 0 & 0.5 \\ 0.5 & -0.5 & 0\end{array}\right]$
(b) $A^{-1}=\left[\begin{array}{ccc}0 & -0.5 & 0.5 \\ -0.5 & 0 & 0.5 \\ 0.5 & 0.5 & 0\end{array}\right]$
(c) $A^{-1}=\left[\begin{array}{ccc}0.5 & -0.5 & 0 \\ -0.5 & 0 & 0.5 \\ 0.5 & 0.5 & 0\end{array}\right]$
(d) the inverse does not exist
4. NumTH Single

Find the kernel of $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$.
(a) $\operatorname{ker}(A)=\operatorname{span}\left\{\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]\right\}$
(b) $\operatorname{ker}(A)=\operatorname{span}\left\{\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right\}$
(c) $\operatorname{ker}(A)=\operatorname{span}\left\{\left[\begin{array}{c}-2 \\ 1 \\ -1\end{array}\right]\right\}$
(d) $\operatorname{ker}(A)=\operatorname{span}\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]\right\}$
5. suvir single

An $n \times k$ matrix A has the following kernel:

$$
\operatorname{ker}(A)=\operatorname{span}\left\{\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]\right\}
$$

What is the dimension of its image $\operatorname{dim}(\operatorname{im}(A))$?
(a) $\operatorname{dim}(\operatorname{im}(A))=n-3$
(b) $\operatorname{dim}(\operatorname{im}(A))=k-1$
(c) $\operatorname{dim}(\operatorname{im}(A))=k-2$
(d) $\operatorname{dim}(\operatorname{im}(A))=n$
6. Mumi single

Given the matrix $A=B \cdot C \cdot D$ find its inverse A^{-1}.
(a) $A^{-1}=C^{-1} D^{-1} B^{-1}$
(b) $A^{-1}=D^{-1} B^{-1} C^{-1}$
(c) $A^{-1}=D^{-1} C^{-1} B^{-1}$
(d) $A^{-1}=B^{-1} C^{-1} D^{-1}$
7. Mumil Single

A linear map $D: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by the following matrix in the standard basis: $D_{\text {st }}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. How is the map represented in the following basis: $\left\{\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$?
(a) $D_{\text {new }}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$
(b) $D_{\text {new }}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
(c) $D_{\text {new }}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(d) $D_{\text {new }}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
8. Nulm Single

Consider the standard basis in $\mathbb{R}^{3}:\left\{e_{x}, e_{y}, e_{z}\right\}$.
Which of the following matrices represents a counterclockwise rotation around the z-axis?
(a) $\mathcal{R}=\left[\begin{array}{ccc}\cos \varphi & 0 & \sin \varphi \\ 0 & 1 & 0 \\ \sin \varphi & 0 & \cos \varphi\end{array}\right]$
(b) $\mathcal{R}=\left[\begin{array}{ccc}1 & 0 & -\sin \varphi \\ \cos \varphi & 1 & \cos \varphi \\ \sin \varphi & 0 & 1\end{array}\right]$
(c) $\mathcal{R}=\left[\begin{array}{ccc}\cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1\end{array}\right]$
(d) $\mathcal{R}=\left[\begin{array}{ccc}\cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 0\end{array}\right]$
9. Autir single

Consider the space of 2×2 Hermitian Matrices $H_{2}(\mathbb{C})$ (the space of 2×2 matrices A with complex entries such that $A^{\dagger}=A$).
Which of the following is true?
(a) $H_{2}(\mathbb{C})$ is a vector space over the field of complex numbers, but not over the real numbers.
(b) $\mathrm{H}_{2}(\mathbb{C})$ is not a vector space over the field of real numbers or complex numbers.
(c) $H_{2}(\mathbb{C})$ is a vector space over the field of real numbers, but not over the complex numbers.
(d) $H_{2}(\mathbb{C})$ is a vector space over the field of real numbers and over the complex numbers.
10. MuTIT Single

Consider the vector space $P_{2}(\mathbb{R})=\{p(x) \mid p(x)$ is a quadratic polynomial $\}$.
Is the derivative operator $\mathcal{D}: p(x) \mapsto p^{\prime}(x) \equiv \frac{\mathrm{d}}{\mathrm{d} x} p(x)$ a linear operator? If it is, how is it represented in the standard basis $\mathfrak{B}=\left\{1, x, x^{2}\right\}$
Hint: You can express a polynomial $a x^{2}+b x+c$ as $\left[\begin{array}{l}c \\ b \\ a\end{array}\right]$
(a) \mathcal{D} is a linear operator with $[\mathcal{D}]_{\mathfrak{B}}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right]$
(b) \mathcal{D} is not a linear operator
(c) \mathcal{D} is a linear operator with $[\mathcal{D}]_{\mathfrak{B}}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$
(d) \mathcal{D} is a linear operator with $[\mathcal{D}]_{\mathfrak{B}}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Total of marks: 10

