Week 1: PreFunctions

1.

| MULTI 1.0 point 0 penalty Single Shuffe |
| :--- | :--- |

Find the (complex) roots of the polynomial

$$
p(x)=x^{2}+4 x+13
$$

(a) $x_{1}=-2-3 i, x_{2}=-2+3 i(100 \%)$
(b) $x_{1}=-3+2 i, x_{2}=-3-2 i$
(c) $x_{1}=+2+3 i, x_{2}=+2-3 i$
(d) $x_{1}=+3-2 i, x_{2}=+3+2 i$

Quadratic formula:

$$
x_{1,2}=\frac{-4 \pm \sqrt{4^{2}-4 \cdot 13}}{2}=\frac{-4 \pm \sqrt{-36}}{2}=-2 \pm 3 i
$$

2.

MULTI 1.0 point 0 penalty Single Shuffle

Let $p(x)$ be a polynomial of degree n with arbitrary complex coefficients. Which of the following is true?
(a) $p(x)$ has exactly n roots (considering multiplicities) (100%)
(b) If z is a root, then its complex conjugate is z^{*} is also a root
(c) If $p(x)=c\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n}\right)$ with $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$, then the roots of $p(x)$ can be real and also imaginary.
(d) $p(x)$ can have no roots

Consider the fundamental theorem of algebra: "Any polynomial of degree n with complex coefficients is the product of n linear factors." (These factors being the roots.) And roots come in complex conjugate pairs as proven in class.
3.

Find all the values of the parameter λ for which the equation

$$
2 x^{2}-\lambda x+\lambda=0
$$

has no real solutions.
(a) $\lambda \in(0,8)(100 \%)$
(b) $\lambda \in(-\infty, 0) \cup(8, \infty)$
(c) $\lambda \in\{0,8\}$
(d) $\lambda \in(-8,0)$

Check the discriminant: $\Delta=\lambda^{2}-4 \cdot 2 \cdot \lambda=\lambda(\lambda-8)$

- $\Delta=0$ for $\lambda=0$ or $\lambda=8$ (1 real solution)
- $\Delta>0$ for $\lambda>8$ or $\lambda<0$ (2 real solutions)
- $\Delta<0$ for $\lambda \in(0,8)$ (pair of complex-conjugate roots)

4.

1 Mutri 1.0 point 0 penalty \quad Multiple Shuffe

The number $5.21 \overline{37}$ is:
(a) a rational number (50\%)
(b) a natural number (-50%)
(c) an integer (-50%)
(d) a real number (50\%)

Let $x=0.3737 \ldots \Longrightarrow 99 x=100 x-x=37.37 \ldots-0.37 \ldots=37 \Longrightarrow x=\frac{37}{99}$
Now note that:
$5.21 \overline{37}=5+0.2+0.01+0.00 \overline{37}=5+\frac{2}{10}+\frac{1}{100}+\frac{1}{100} \frac{37}{99}=5 \frac{529}{2475}$
which is indeed a fraction.
5.

Assuming that $z=a+b i$ is a complex number, compute real and imaginary part of $\frac{1}{z^{2}}$
(a) $\operatorname{Re}\left(\frac{1}{z^{2}}\right)=\frac{a^{2}-b^{2}}{\left(a^{2}+b^{2}\right)^{2}}, \operatorname{Im}\left(\frac{1}{z^{2}}\right)=\frac{-2 a b}{\left(a^{2}+b^{2}\right)^{2}}(100 \%)$
(b) $\operatorname{Re}\left(\frac{1}{z^{2}}\right)=\frac{a^{2}+b^{2}}{\left(a^{2}+b^{2}\right)^{2}}, \operatorname{Im}\left(\frac{1}{z^{2}}\right)=\frac{-2 a b}{\left(a^{2}+b^{2}\right)^{2}}$
(c) $\operatorname{Re}\left(\frac{1}{z^{2}}\right)=\frac{a^{2}-b^{2}}{\left(a^{2}-b^{2}\right)^{2}}, \operatorname{Im}\left(\frac{1}{z^{2}}\right)=\frac{2 a b}{\left(a^{2}-b^{2}\right)^{2}}$
(d) $\operatorname{Re}\left(\frac{1}{z^{2}}\right)=\frac{a^{2}+b^{2}}{\left(a^{2}+b^{2}\right)^{2}}, \operatorname{Im}\left(\frac{1}{z^{2}}\right)=\frac{2 a b}{\left(a^{2}+b^{2}\right)^{2}}$

$$
\frac{1}{z^{2}}=\frac{1}{a^{2}+2 a b i-b^{2}}=\frac{a^{2}-2 a b i-b^{2}}{\left(a^{2}+2 a b i-b^{2}\right)\left(a^{2}-2 a b i-b^{2}\right)}=\frac{a^{2}-b^{2}}{\left(a^{2}+b^{2}\right)^{2}}+i \frac{(-2 a b)}{\left(a^{2}+b^{2}\right)^{2}}
$$

6.

0 Mulri 1.0 point 0 penalty \quad Single Shuffe

Consider $v, w \in \mathbb{C}$. Which of the following is NOT true?
(a) $v^{-1}=\frac{\left(v^{*}\right)^{-1}}{|v|^{2}}\left(\right.$ with $\left.|v|:=\sqrt{v \cdot v^{*}}\right)(100 \%)$
(b) $v^{*} \cdot w^{*}=(v \cdot w)^{*}$
(c) $v^{*}+w^{*}=(v+w)^{*}$
(d) $\left(v^{*}\right)^{m}+\left(w^{*}\right)^{n}=\left(v^{m}+w^{n}\right)^{*}$ for $m, n \in \mathbb{N}$

$$
|v|^{2}=v \cdot v^{*} \Longrightarrow v^{-1}=\frac{v^{*}}{|v|^{2}}
$$

7.

0 Nutrit 1.0 point 0 penalty Single Shuffe

Let $p(x)$ be a polynomial of degree n with real coefficients. Which of the following is true?
(a) If z is a root, then its complex conjugate is z^{*} is also a root (100%)
(b) $p(x)$ has n distinct real roots
(c) If $p(x)$ is odd, it can have no roots
(d) $p(x)$ can have less than n complex roots

It can be easily verified that $p\left(z^{*}\right)=(p(z))^{*}$ if the coefficients are real (using the identities from exercise (6)).
Then $p(z)=0 \Longrightarrow(p(z))^{*}=0 \Longrightarrow p\left(z^{*}\right)=0$,
8.

Compute $\left|\frac{1+i}{2-i}\right|$.
(a) $\left|\frac{1+i}{2-i}\right|=\sqrt{\frac{2}{5}}(100 \%)$
(b) $\left|\frac{1+i}{2-i}\right|=\sqrt{\frac{2}{3}}$
(c) $\left|\frac{1+i}{2-i}\right|=\frac{2}{5}$
(d) $\left|\frac{1+i}{2-i}\right|=\frac{2}{3}$
$\left|\frac{1+i}{2-i}\right|^{2}=\frac{(1+i)(1-i)}{(2-i)(2+i)}=\frac{1+1}{4+1}=\frac{2}{5} \Rightarrow\left|\frac{1+i}{2-i}\right|=\sqrt{\frac{2}{5}}$
9.
MULTI 1.0 point 0 penalty Single Shuffle

Which of the following is equal to \sqrt{i} ?
(a) $\frac{1+i}{\sqrt{2}}(100 \%)$
(b) $1-i$
(c) i
(d) $\frac{1-i}{\sqrt{2}}$

$$
\left(\frac{1+i}{\sqrt{2}}\right)^{2}=\frac{1^{2}+2 i+i^{2}}{2}=\frac{1+2 i-1}{2}=i \Longrightarrow \sqrt{i}=\frac{1+i}{\sqrt{2}}
$$

10.

0 nutrit 1.0 point 0 penalty Single Shuffe

Which of the following does not describe the rational numbers \mathbb{Q} ?
(a) $\mathbb{Q}=\left\{\left.\frac{n}{m} \right\rvert\, n, m \in \mathbb{N}\right\}(100 \%)$
(b) $\mathbb{Q}=\left\{\left.\frac{n}{m} \right\rvert\, n, m \in \mathbb{Z}\right.$ and $\left.m \neq 0\right\}$
(c) $\mathbb{Q}=\left\{\left.\frac{n}{m} \right\rvert\, n, m \in \mathbb{N}\right\} \cup\left\{\left.\frac{-n}{m} \right\rvert\, n, m \in \mathbb{N}\right\} \cup\{0\}$
(d) $\mathbb{Q}=\left\{\left.\frac{n}{m} \right\rvert\, n \in \mathbb{Z}\right.$ and $\left.m \in \mathbb{N}\right\}$

This set would only describe the positive rational numbers.
Total of marks: 10

