Week 2: Functions

1.

For which x is $x^{2}-5 x+6 \geq 0$?
(a) $x \leq 2$ and $x \geq 3$ (100\%)
(b) $2 \leq x \leq 3$
(c) $x \leq-6$ and $x \geq 1$
(d) $-6 \leq x \leq 1$

Factorizing: $x^{2}-5 x+6$ into $(x-3)(x-2)$ and equating to 0 shows $x=2$ and $x=3$ are the roots of the function. By inspection, we find that $x^{2}-5 x+6 \geq 0$ for $x \in(-\infty, 2) \cup(3, \infty)$
2.
MULTI 1.0 point 0 penalty Single Shuffe

Solve $5 x^{2}=x^{4}-14$.
(a) $x_{1,2}= \pm \sqrt{7}, x_{3,4}= \pm i \sqrt{2}(100 \%)$
(b) $x_{1,2}= \pm \sqrt{7}, x_{3,4}= \pm \sqrt{2}$
(c) $x_{1,2}= \pm \sqrt{2}, x_{3,4}= \pm i \sqrt{7}$
(d) $x_{1,2}= \pm \sqrt{2}, x_{3,4}= \pm \sqrt{7}$

Rearrange $5 x^{2}=x^{4}-14$ into $x^{4}-5 x^{2}-14=0$. Now solve for x^{2} using quadratic formula:

$$
\begin{aligned}
x_{1,2}^{2}= & \frac{+5 \pm \sqrt{25+4 \cdot 14}}{2}=\frac{5 \pm 9}{2}=\{-2,7\} \Rightarrow \\
& \stackrel{x= \pm \sqrt{x^{2}}}{\Longrightarrow} x_{1,2,3,4}=\{ \pm i \sqrt{2}, \pm \sqrt{7}\}
\end{aligned}
$$

3.

0 Multit 1.0 point 0 penalty Single Shuffe

Solve $x^{4}+4 x^{2}=20 x+x^{3}-16$ (Hint: $x=2$ satisfies the equation).
(a) $x_{1,2,3,4}=\{1,2,-1-i \sqrt{7},-1+i \sqrt{7}\}(100 \%)$
(b) $x_{1,2,3,4}=\{1,2,+1-i \sqrt{7},+1+i \sqrt{7}\}$
(c) $x_{1,2,3,4}=\{1,1,-1-i \sqrt{7},-1+i \sqrt{7}\}$
(d) $x_{1,2,3,4}=\{2,2,-1-i \sqrt{7},-1+i \sqrt{7}\}$

Using the hint:

$$
\begin{gathered}
\left(\begin{array}{r}
\left.x^{4}-x^{3}+4 x^{2}-20 x+16\right) \div(x-2)=x^{3}+x^{2}+6 x-8 \\
-x^{4}+2 x^{3} \\
x^{3}+4 x^{2} \\
\frac{-x^{3}+2 x^{2}}{6 x^{2}-20 x} \\
\frac{-6 x^{2}+12 x}{-8 x}+16 \\
\frac{8 x-16}{0}
\end{array}\right.
\end{gathered}
$$

Noticing that $x=1$ is also a solution:

$$
\begin{gathered}
\left(\begin{array}{l}
\left.x^{3}+x^{2}+6 x-8\right) \div(x-1)=x^{2}+2 x+8 \\
-x^{3}+x^{2}
\end{array}\right. \\
\hline \begin{array}{l}
2 x^{2}+6 x \\
-2 x^{2}+2 x \\
8 x-8 \\
\\
\hline-8 x+8
\end{array}
\end{gathered}
$$

Finally, using quadratic formula: $x=\frac{-2 \pm \sqrt{4-4 \cdot 8}}{2}=\frac{-2 \pm 2 \sqrt{-7}}{2}=-1 \pm i \sqrt{7}$
4.

0 MUTTT 1.0 point 0 penalty Single Shuffe

Which function has the roots: $x_{1,2,3,4}=\{-4,5,7,1\}$?
(a) $f(x)=x^{4}-9 x^{3}-5 x^{2}+153 x-140(100 \%)$
(b) $f(x)=x^{4}+5 x^{3}-33 x^{2}-113 x+140$
(c) $f(x)=x^{4}+7 x^{3}-21 x^{2}-167 x-140$
(d) $f(x)=x^{4}+17 x^{3}+99 x^{2}+223 x+140$

Check the values of $f(1), f(-4), f(5), f(7)$ (they all should be 0).
5.
1 Multi 1.0 point 0 penalty Single Shuffe

Given the following function: $f(x)=x^{3}+b x^{2}+c x-14$ with $b, c \in \mathbb{R}$ and knowing that $f(1+i)=0$, solve $f(x)=0$.
(a) $x_{1,2,3}=\{1+i, 1-i, 7\}(100 \%)$
(b) $x_{1,2,3,4}=\{1+i, 1-i,-1-i,-1+i\}$
(c) $x_{1,2,3,4}=\{1+i, 1-i, \pm 7\}$
(d) $x_{1,2,3}=\{1+i,-1+i,-7\}$
$x_{1}=1+i$ is a root of $f(x)$, therefore $x_{2}=1-i$ is as well $(f(x)$ is a polynomial with real coefficients $\Rightarrow f(x)=0$ implies $f^{*}(x)=0^{*}=f\left(x^{*}\right)=0$ where * denotes complex conjugation). Note that the product of all roots should be equal to 14 (note that $\left.\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)=x^{3}+\alpha x^{2}+\beta x-x_{1} x_{2} x_{3}\right) .(1-i)(1+i)=2 \Rightarrow x_{3}=7$
6.

0 Nutri 1.0 point 0 penalty Single Shuffe
Find all the roots (real or complex) of the polynomial

$$
p(x)=24-8 x-18 x^{2}+18 x^{3}-x^{4}-4 x^{5}+x^{6} .
$$

Hint: $x=3$ is a root. Divide out the associated linear factor and continue with more roots that are easy to guess.
(a) $x_{1,2,3,4,5,6}=\{-2,-1,2,3,1+i, 1-i\}(100 \%)$
(b) $x_{1,2,3,4,5,6}=\{-3,-1,2,3,1+i, 1-i\}$
(c) $x_{1,2,3,4,5,6}=\{-2,-1,1,3,2+i, 2-i\}$
(d) $x_{1,2,3,4,5,6}=\{-2,-1,1,3,1+i, 1-i\}$
7.

0 Multi 1.0 point 0 penalty ${ }^{\text {Single }}$ Shuffe
Let $f(x)=e^{-9 x+3}$. Determine the Domain and Range of $f(x)$ and its inverse $f^{-1}(x)$.
(a) $\operatorname{Dom}(f)=(-\infty, \infty), \operatorname{Ran}(f)=(0, \infty)$,
$\operatorname{Dom}\left(f^{-1}\right)=(0, \infty), \operatorname{Ran}\left(f^{-1}\right)=(-\infty, \infty)(100 \%)$
(b) $\operatorname{Dom}(f)=(-\infty, \infty), \operatorname{Ran}(f)=[0, \infty)$,
$\operatorname{Dom}\left(f^{-1}\right)=[0, \infty), \operatorname{Ran}\left(f^{-1}\right)=(-\infty, \infty)$
(c) $\operatorname{Dom}(f)=(0, \infty)$, Range $(f)=(-\infty, \infty)$,
$\operatorname{Dom}\left(f^{-1}\right)=(-\infty, \infty), \operatorname{Ran}\left(f^{-1}\right)=(0, \infty)$
(d) $\operatorname{Dom}(f)=[0, \infty), \operatorname{Ran}(f)=[0, \infty)$,
$\operatorname{Dom}\left(f^{-1}\right)=[0, \infty), \operatorname{Ran}\left(f^{-1}\right)=[0, \infty)$
e^{x} is defined for all real values, and $0<e^{x} \leq 1$ for $x \in(-\infty, 0]$, and $1<e^{x}<\infty$ for $x \in(0, \infty)$. Since e^{x} is invertible, then the domain of f^{-1} is the range of f and the range of f^{-1} is the domain of f.
8.

Mutrit 1.0 point 0 penalty Single Shuffe

Let $g(x)=e^{-13 x^{2}+7}$. Determine the Domain and Range of $g(x)$.
(a) $\operatorname{Domain}(g)=(-\infty, \infty)$, Range $(f)=\left(0, e^{7}\right](100 \%)$
(b) $\operatorname{Domain}(g)=[0, \infty)$, Range $(f)=(0, \infty)$
(c) $\operatorname{Domain}(g)=(-\infty, \infty)$, Range $(f)=[0, \infty)$
(d) $\operatorname{Domain}(g)=[0, \infty)$, Range $(f)=(0,1]$
$e^{-x^{2}}$ is well defined for all real values, and it has a maximum at $x=0$. Thus, its range is $(0, f(0))=\left(0, e^{7}\right)$.
9.
0 Murti 1.0 point 0 penalty Single Shuffe

Consider the two variable equation $(y-2)^{2}=2(x-1)$. Which of the following is true?
(a) y does not describe a function of x and x describes a function of $y(100 \%)$
(b) y describes a function of x and x describes a function of y
(c) y describes a function of x and x does not describe a function of y
(d) y does not describe a function of x and x does not describe a function of y
x is simply a quadratic function of y, but $y(x)$ takes two values for every x (namely $\pm \sqrt{2(x-1)}+2)$
10.
0 Mutrit 1.0 point 0 penalty 0 Single Shuffe

Find the sum of the binomial coefficients:

$$
\sum_{k=0}^{n}\binom{n}{k}
$$

(a) $2^{n}(100 \%)$
(b) e^{n}
(c) $(n!)^{2}$
(d) n^{n}

$$
\begin{gathered}
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} \cdot y^{n-k}
\end{gathered} \Longrightarrow(1+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} 1^{k} \cdot 1^{n-k}, ~\left(2^{n}=\sum_{k=0}^{n}\binom{n}{k}\right.
$$

Total of marks: 10

