Week 4: Limits, Continuity, and Start of Derivatives

1. MvLm Single

Which of the following functions does not have a horizontal asymptote
(a) $f(x)=\frac{\log \left(|x|^{7}\right)}{\log \left(|x|^{3}\right)+x}$
(b) $f(x)=\frac{\log |x|}{x}$
(c) $f(x)=\frac{a_{0}+a_{1} \cdot x+\ldots+a_{n} \cdot x^{n}}{b_{0}+b_{1} \cdot x+\ldots+b_{n} \cdot x^{n}}$, where all coefficients are non-zero.
(d) $f(x)=\frac{e^{\mid x} \mid}{x^{m}+x^{m-1}+\ldots+x+1}$ for $m \in \mathbb{N}$
2. Nutri Single

Evaluate the limit:

$$
\lim _{x \rightarrow 0} \frac{12^{x}-1}{x}
$$

(a) 12
(b) $\ln (12)$
(c) 0
(d) $1 / \ln (12)$
3. Mutrm single

Evaluate the limit:

$$
\lim _{N \rightarrow \infty} \sum_{i=1}^{N} \frac{i^{2}}{N^{3}}
$$

(a) 0
(b) $1 / 3$
(c) $1 / 2$
(d) 1
4. NuTrit single

Evaluate the limit:

$$
\lim _{N \rightarrow \infty} \sum_{i=1}^{N} \frac{1}{i^{2}+i}
$$

(a) $4 / 3$
(b) 2
(c) 1
(d) $9 / 8$
5. NuLT Single

Check by induction which of the following is true:
(a) $\sum_{k=1}^{n} 2^{k-1}=2^{n}+1$
(b) $\sum_{k=1}^{n}(2 k-1)=n^{2}$
(c) $n!<2^{n}$ for $n>4$
(d) $\sum_{k=1}^{n} k^{3}=n^{2}(n+1)^{2}$
6. MULTI Single

Let $f(x)$ be a differentiable function. Now consider

$$
f_{1}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}, \quad f_{2}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

(a) Neither f_{1} or f_{2} define the derivative of f
(b) f_{1} defines a derivative while f_{2} does not
(c) Both f_{1} and f_{2} define the derivative of f
(d) f_{2} defines a derivative while f_{1} does not
7. Mutri Single

Using the limit definition of the derivative and letting $f(x)=x^{2}+x$, which of the following is true?
(a) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h+x+h-x^{2}-x}{h}$
(b) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{x^{2}+x+h-x^{2}-x}{h}$
(c) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{x^{2}+h^{2}+x+h-x^{2}-x}{h}$
(d) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+x+h-x^{2}-x}{h}$
8. NULT Single

Let $m \geq 2$. Consider the piecewise function $f(x)= \begin{cases}x^{m}, & \text { if } x<0 \\ 0, & \text { if } x \geq 0\end{cases}$
Evaluate $f^{\prime}(0)$ using the limit definition of the derivative.
(a) $f^{\prime}(0)=1$
(b) f is not differentiable at $x=0$
(c) $f^{\prime}(0)=0$
(d) $f^{\prime}(0)=m-1$
9. AvLTm Single

Consider the piecewise function $f(x)= \begin{cases}-x^{2}, & \text { if } x<0 \\ 0, & \text { if } x=0 \\ \sin x, & \text { if } x>0\end{cases}$
Evaluate $f^{\prime}(0)$ using the limit definition of the derivative.
(a) $f^{\prime}(0)=\pi$
(b) $f^{\prime}(0)=0$
(c) f is not differentiable at $x=0$
(d) $f^{\prime}(0)=1$
10. NuTri Single

The ReLU (Rectified Linear Unit) function is defined as $\operatorname{ReLU}(x)=\max \{0, x\}$ Which of the following is true?
(a) ReLU is differentiable everywhere but $x=0$, with $\frac{\mathrm{d}}{\mathrm{d} x} \operatorname{ReLU}(x)=\left\{\begin{array}{cc}0, & \text { if } x \leq 0 \\ 1, & \text { else }\end{array}\right\}$
(b) ReLU is differentiable at finitely many places
(c) ReLU is nowhere differentiable
(d) ReLU is a differentiable function (differentiable everywhere)

Total of marks: 10

