Week 9: Application of Integration and Indefinite Integrals

1. MULTI Single

Find the area A under the curve of $f(x) = \sqrt{x}$ from x = 0 to x = 4.

- (a) A = 2(b) A = 8(c) $A = \frac{1}{4}$ (d) $A = \frac{16}{3}$
- 2. MULTI Single

Calculate the area between the curves:

$$y_1(x) = x^2 + 2$$
, and $y_2 = \sin x$,

for values of $x \in (-1, 2)$.

(a)
$$A = \frac{7}{3} + 1 + \cos 2 + \cos 1$$

(b) $A = 9 + \cos 2 - \cos 1$
(c) $A = 9 + \cos 2 + \cos 1$
(d) $A = \frac{7}{3} + 1 + \cos 2 - \cos 1$

Calculate the area between $\sin(x)$ and $\cos(x)$ on the interval $[0, 2\pi]$. *Hint*: $\sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, \cos\left(\frac{5\pi}{4}\right) = \frac{-1}{\sqrt{2}}.$ (a) $2\sqrt{2}$ (b) $4\sqrt{2}$ (c) $\sqrt{2}$ (d) 04. $\boxed{\text{MULTI}}$ $\boxed{\text{Single}}$ The integral $\int_{-\infty}^{\infty} x \, dx$: (a) does not exist (b) equals $x^2 + C$ (c) equals 0(d) equals ∞ 5. $\boxed{\text{MULTI}}$ $\boxed{\text{Single}}$

Find the area between the curves $x = 1 - y^2$ and y = -x - 1.

- (a) 2
- (b) 4.5
- (c) 3.5

(d) 1

6. MULTI Single

Which of the following integrals computes the volume V of a cone of height h and base radius R?

(a)
$$V = \int_{0}^{h} A(x) \, dx$$
 with $A(x) = \frac{1}{3}\pi R^{2}h$.
(b) $V = \int_{0}^{h} A(x) \, dx$ with $A(x) = \pi \frac{h^{2}}{R^{2}}x^{2}$.
(c) $V = \int_{0}^{h} A(x) \, dx$ with $A(x) = \pi \frac{R^{2}}{h^{2}}x^{2}$.
(d) $V = \int_{0}^{R} A(x) \, dx$ with $A(x) = \pi x^{2}$.

7. MULTI Single

Compute the (infinite) Taylor series of e^x around x = 0. (See the Week 9 Example Session notes.)

(a)
$$\sum_{n=1}^{\infty} \frac{n \cdot x^n}{n!}$$

(b)
$$\sum_{n=0}^{\infty} \frac{n \cdot x^n}{n!}$$

(c)
$$\sum_{n=1}^{\infty} \frac{x^n}{n!}$$

(d)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

8. Multi Single

Compute the Taylor series of sin(x) around x = 0. (See the Week 9 Example Session notes.)

(a)
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n+1)!}$$

(b)
$$\sum_{n=0}^{\infty} \frac{x^{2n-1}}{(2n-1)!}$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n-1)!}$$

9. MULTI Single

Compute the Taylor series of cos(x) around x = 0. (See the Week 9 Example Session notes.)

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+1)!}$$

(b)
$$\sum_{n=0}^{\infty} \frac{x^{2n-1}}{(2n)!}$$

(c) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$
(d) $\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n-1)!}$

10. Introduction Single Evaluate
$$\int \sqrt{1-x^2} \, \mathrm{d}x$$
. *Hint:* A trigonometric substitution.

(a)
$$\frac{x\sqrt{1-x^2}}{2} + \frac{\arcsin(x)}{2} + C$$

(b) $\sqrt{x} + \arctan(x) + C$
(c) $\frac{\tan(2x)}{2} + \frac{xe^x}{2} + C$
(d) $\frac{1}{\sqrt{1-x^2}} + \cos(x) + C$

Total of marks: 10