Week 9: Application of Integration and Indefinite Integrals

1.

MULTI 1.0 point 0 penalty Single Shuffle Find the area A under the curve of $f(x) = \sqrt{x}$ from x = 0 to x = 4.

(a) $A = \frac{16}{3} (100\%)$ (b) A = 8(c) A = 2(d) $A = \frac{1}{4}$

$$A = \int_0^4 \sqrt{x} \, \mathrm{d}x = \frac{2}{3} x^{3/2} \Big|_0^4 = \frac{16}{3}.$$

0	
2	•

MULTI	$\begin{bmatrix} 1.0 \text{ point} \end{bmatrix}$	0 penalty	Single	[Shuffle]
menn	Lio point	o ponurey	Single	

Calculate the area between the curves:

$$y_1(x) = x^2 + 2$$
, and $y_2 = \sin x$,

for values of $x \in (-1, 2)$.

(a) $A = 9 + \cos 2 - \cos 1$ (100%) (b) $A = \frac{7}{3} + 1 + \cos 2 - \cos 1$ (c) $A = \frac{7}{3} + 1 + \cos 2 + \cos 1$ (d) $A = 9 + \cos 2 + \cos 1$

$$A = \int_{-1}^{2} (y_1 - y_2) dx = \int_{-1}^{2} (x^2 + 2 - \sin x) dx = \frac{x^3}{3} + 2x + \cos x \Big|_{-1}^{2} = \frac{8}{3} + 4 + \cos 2 + \frac{1}{3} + 2 - \cos(-1) = 9 + \cos 2 - \cos 1$$

3.

Calculate the area between $\sin(x)$ and $\cos(x)$ on the interval $[0, 2\pi]$. *Hint*: $\sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, \sin\left(\frac{5\pi}{4}\right) = \frac{-1}{\sqrt{2}}, \cos\left(\frac{5\pi}{4}\right) = \frac{-1}{\sqrt{2}}.$ (a) $4\sqrt{2}$ (100%) (b) $\sqrt{2}$ (c) $2\sqrt{2}$

(d) 0

Using periodicity of sin and cos in the second step, we find $A = \int_0^{2\pi} |\cos(x) - \sin(x)| \, \mathrm{d}x$ $= \int_{\pi/4}^{5\pi/4} (\sin(x) - \cos(x)) \, \mathrm{d}x + \int_{5\pi/4}^{9\pi/4} (\cos(x) - \sin(x)) \, \mathrm{d}x$ $= 2\sqrt{2} + 2\sqrt{2} = 4\sqrt{2}$

4.

MULTI 1.0 point 0 penalty Single Shuffle The integral $\int_{-\infty}^{\infty} x \, dx$: (a) equals 0 (b) equals ∞ (c) does not exist (100%) (d) equals $x^2 + C$

It does not exist according to the definition of an improper integral (see class), since neither $\int_0^\infty x \, dx$ nor $\int_{-\infty}^0 x \, dx$ exist.

5.

Find the area between the curves $x = 1 - y^2$ and y = -x - 1.

(a) 4.5 (100%)
(b) 3.5
(c) 2
(d) 1

Find points of intersection:

$$y = -(1 - y^2) - 1 = y^2 - 2 \Rightarrow y^2 - y - 2 = 0 \Rightarrow y_{1,2} = \frac{1 \pm \sqrt{1 + 8}}{2} = \{-1, 2\}$$

Then, using y as an independent variable:

$$A = \int_{-1}^{2} \left((1 - y^2) - (-y - 1) \right) dy = \int_{-1}^{2} (-y^2 + y + 2) dy = -\frac{1}{3}y^3 + \frac{1}{2}y^2 + 2y \Big|_{-1}^{2} = \frac{9}{2}$$

6.

 MULTI
 1.0 point
 0 penalty
 Single
 Shuffle

Which of the following integrals computes the volume V of a cone of height h and base radius R?

(a)
$$V = \int_{0}^{h} A(x) dx$$
 with $A(x) = \pi \frac{R^2}{h^2} x^2$. (100%)
(b) $V = \int_{0}^{R} A(x) dx$ with $A(x) = \pi x^2$.
(c) $V = \int_{0}^{h} A(x) dx$ with $A(x) = \pi \frac{h^2}{R^2} x^2$.
(d) $V = \int_{0}^{h} A(x) dx$ with $A(x) = \frac{1}{3} \pi R^2 h$.
The formula $V = \int_{0}^{h} A(x) dx$ with $A(x) = \pi \frac{R^2}{h^2} x^2$ is correct similarly to the example discussed in class. (Draw a picture to see this.)

7.

 MULTI
 1.0 point
 0 penalty
 Single
 Shuffle

Compute the (infinite) Taylor series of e^x around x = 0. (See the Week 9 Example Session notes.)

(a)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!} (100\%)$$

(b)
$$\sum_{n=1}^{\infty} \frac{x^n}{n!}$$

(c)
$$\sum_{n=0}^{\infty} \frac{n \cdot x^n}{n!}$$

(d)
$$\sum_{n=1}^{\infty} \frac{n \cdot x^n}{n!}$$

 $Direct\ computation:$

$$\left. \frac{\mathrm{d}^n}{\mathrm{d}x^n} e^x \right|_{x=0} = e^0 = 1$$

8.

 MULTI
 1.0 point
 0 penalty
 Single
 Shuffle

Compute the Taylor series of sin(x) around x = 0. (See the Week 9 Example Session notes.)

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
 (100%)
(b) $\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n+1)!}$
(c) $\sum_{n=0}^{\infty} \frac{x^{2n-1}}{(2n-1)!}$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n-1)!}$

Direct computation.

$$\frac{1}{(2n)!} \frac{\mathrm{d}^{2n} \sin(x)}{\mathrm{d}x^{2n}} \Big|_{x=0} = (-1)^n \frac{\sin(0)}{(2n)!} = 0$$
$$\frac{1}{(2n+1)!} \frac{\mathrm{d}^{2n+1} \sin(x)}{\mathrm{d}x^{2n+1}} \Big|_{x=0} = (-1)^n \frac{\cos(0)}{(2n+1)!} = (-1)^n \frac{1}{(2n+1)!}$$

9.

 MULTI
 1.0 point
 0 penalty
 Single
 Shuffle

Compute the Taylor series of $\cos(x)$ around x = 0. (See the Week 9 Example Session notes.)

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$
 (100%)
(b) $\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n-1)!}$
(c) $\sum_{n=0}^{\infty} \frac{x^{2n-1}}{(2n)!}$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+1)!}$

Direct computation.

$$\frac{1}{(2n)!} \frac{\mathrm{d}^{2n} \cos(x)}{\mathrm{d}x^{2n}} \Big|_{x=0} = (-1)^n \frac{\cos(0)}{(2n)!} = (-1)^n \frac{1}{(2n)!}$$
$$\frac{1}{(2n+1)!} \frac{\mathrm{d}^{2n+1} \cos(x)}{\mathrm{d}x^{2n+1}} \Big|_{x=0} = (-1)^{n+1} \frac{\sin(0)}{(2n+1)!} = 0$$

10.

MULTI
 1.0 point
 0 penalty
 Single
 Shuffle

 Evaluate

$$\int \sqrt{1-x^2} \, dx$$
. Hint: A trigonometric substitution.

 (a)
 $\frac{x\sqrt{1-x^2}}{2} + \frac{\arcsin(x)}{2} + C$ (100%)

 (b)
 $\frac{1}{\sqrt{1-x^2}} + \cos(x) + C$

 (c)
 $\frac{\tan(2x)}{2} + \frac{xe^x}{2} + C$

 (d)
 $\sqrt{x} + \arctan(x) + C$

$$I = \int \sqrt{1 - x^2} \, dx = \int \cos^2(t) \, dt \text{ using substitution } x = \sin(t), \, dx = \cos(t) \, dt$$
$$I = \int \frac{\cos(2t) + 1}{2} \, dt = \frac{\sin(2t)}{4} + \frac{t}{2} + C = \frac{\sin(t)\cos(t)}{2} + \frac{t}{2} + C =$$
$$= \frac{x\sqrt{1 - x^2}}{2} + \frac{\arcsin(x)}{2} + C$$

Total of marks: 10