Week 9: Application of Integration and Indefinite Integrals

 1.
MULTI
 1.0 point
 0 penalty
 Single
 Shuffle

Find the area A under the curve of $f(x)=\sqrt{x}$ from $x=0$ to $x=4$.
(a) $A=\frac{16}{3}(100 \%)$
(b) $A=8$
(c) $A=2$
(d) $A=\frac{1}{4}$

$$
A=\int_{0}^{4} \sqrt{x} \mathrm{~d} x=\left.\frac{2}{3} x^{3 / 2}\right|_{0} ^{4}=\frac{16}{3}
$$

2.

Multi 1.0 point 0 penalty Single Shuffle

Calculate the area between the curves:

$$
y_{1}(x)=x^{2}+2, \text { and } y_{2}=\sin x,
$$

for values of $x \in(-1,2)$.
(a) $A=9+\cos 2-\cos 1(100 \%)$
(b) $A=\frac{7}{3}+1+\cos 2-\cos 1$
(c) $A=\frac{7}{3}+1+\cos 2+\cos 1$
(d) $A=9+\cos 2+\cos 1$

$$
\begin{gathered}
A=\int_{-1}^{2}\left(y_{1}-y_{2}\right) \mathrm{d} x=\int_{-1}^{2}\left(x^{2}+2-\sin x\right) \mathrm{d} x=\frac{x^{3}}{3}+2 x+\left.\cos x\right|_{-1} ^{2}= \\
=\frac{8}{3}+4+\cos 2+\frac{1}{3}+2-\cos (-1)=9+\cos 2-\cos 1
\end{gathered}
$$

3.

Calculate the area between $\sin (x)$ and $\cos (x)$ on the interval $[0,2 \pi]$. Hint: $\sin \left(\frac{\pi}{4}\right)=$ $\frac{1}{\sqrt{2}}, \cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}, \sin \left(\frac{5 \pi}{4}\right)=\frac{-1}{\sqrt{2}}, \cos \left(\frac{5 \pi}{4}\right)=\frac{-1}{\sqrt{2}}$.
(a) $4 \sqrt{2}(100 \%)$
(b) $\sqrt{2}$
(c) $2 \sqrt{2}$
(d) 0

Using periodicity of \sin and cos in the second step, we find

$$
\begin{gathered}
A=\int_{0}^{2 \pi}|\cos (x)-\sin (x)| \mathrm{d} x \\
=\int_{\pi / 4}^{5 \pi / 4}(\sin (x)-\cos (x)) \mathrm{d} x+\int_{5 \pi / 4}^{9 \pi / 4}(\cos (x)-\sin (x)) \mathrm{d} x \\
=2 \sqrt{2}+2 \sqrt{2}=4 \sqrt{2}
\end{gathered}
$$

4.

$$
\begin{array}{|l|l|}
\hline \text { MULTI } & 1.0 \text { point } 0 \text { penalty } \text { Single } \text { Shuffe } \\
\hline
\end{array}
$$

The integral $\int_{-\infty}^{\infty} x \mathrm{~d} x$:
(a) equals 0
(b) equals ∞
(c) does not exist (100\%)
(d) equals $x^{2}+C$

It does not exist according to the definition of an improper integral (see class), since neither $\int_{0}^{\infty} x \mathrm{~d} x$ nor $\int_{-\infty}^{0} x \mathrm{~d} x$ exist.
5.
0 NuITH 1.0 point 0 penalty Single Shuffe

Find the area between the curves $x=1-y^{2}$ and $y=-x-1$.
(a) $4.5(100 \%)$
(b) 3.5
(c) 2
(d) 1

Find points of intersection:

$$
y=-\left(1-y^{2}\right)-1=y^{2}-2 \Rightarrow y^{2}-y-2=0 \Rightarrow y_{1,2}=\frac{1 \pm \sqrt{1+8}}{2}=\{-1,2\}
$$

Then, using y as an independent variable:

$$
A=\int_{-1}^{2}\left(\left(1-y^{2}\right)-(-y-1)\right) \mathrm{d} y=\int_{-1}^{2}\left(-y^{2}+y+2\right) \mathrm{d} y=-\frac{1}{3} y^{3}+\frac{1}{2} y^{2}+\left.2 y\right|_{-1} ^{2}=\frac{9}{2}
$$

6.

Which of the following integrals computes the volume V of a cone of height h and base radius R ?
(a) $V=\int_{0}^{h} A(x) \mathrm{d} x$ with $A(x)=\pi \frac{R^{2}}{h^{2}} x^{2}$. (100\%)
(b) $V=\int_{0}^{R} A(x) \mathrm{d} x$ with $A(x)=\pi x^{2}$.
(c) $V=\int_{0}^{h} A(x) \mathrm{d} x$ with $A(x)=\pi \frac{h^{2}}{R^{2}} x^{2}$.
(d) $V=\int_{0}^{h} A(x) \mathrm{d} x$ with $A(x)=\frac{1}{3} \pi R^{2} h$.

The formula $V=\int_{0}^{h} A(x) \mathrm{d} x$ with $A(x)=\pi \frac{R^{2}}{h^{2}} x^{2}$ is correct similarly to the example discussed in class. (Draw a picture to see this.)
7.

0 avirit 1.0 point 0 penalty Single Shuffe

Compute the (infinite) Taylor series of e^{x} around $x=0$. (See the Week 9 Example Session notes.)
(a) $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}(100 \%)$
(b) $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$
(c) $\sum_{n=0}^{\infty} \frac{n \cdot x^{n}}{n!}$
(d) $\sum_{n=1}^{\infty} \frac{n \cdot x^{n}}{n!}$

Direct computation:

$$
\left.\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}} e^{x}\right|_{x=0}=e^{0}=1
$$

8.

Compute the Taylor series of $\sin (x)$ around $x=0$. (See the Week 9 Example Session notes.)
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}(100 \%)$
(b) $\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n+1)!}$
(c) $\sum_{n=0}^{\infty} \frac{x^{2 n-1}}{(2 n-1)!}$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n-1)!}$

Direct computation.

$$
\begin{gathered}
\left.\frac{1}{(2 n)!} \frac{\mathrm{d}^{2 n} \sin (x)}{\mathrm{d} x^{2 n}}\right|_{x=0}=(-1)^{n} \frac{\sin (0)}{(2 n)!}=0 \\
\left.\frac{1}{(2 n+1)!} \frac{\mathrm{d}^{2 n+1} \sin (x)}{\mathrm{d} x^{2 n+1}}\right|_{x=0}=(-1)^{n} \frac{\cos (0)}{(2 n+1)!}=(-1)^{n} \frac{1}{(2 n+1)!}
\end{gathered}
$$

9.

\section*{| MULTI |
| :--- | :--- | :--- |}

Compute the Taylor series of $\cos (x)$ around $x=0$. (See the Week 9 Example Session notes.)
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}(100 \%)$
(b) $\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n-1)!}$
(c) $\sum_{n=0}^{\infty} \frac{x^{2 n-1}}{(2 n)!}$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n+1)!}$

Direct computation.

$$
\begin{aligned}
& \left.\frac{1}{(2 n)!} \frac{\mathrm{d}^{2 n} \cos (x)}{\mathrm{d} x^{2 n}}\right|_{x=0}=(-1)^{n} \frac{\cos (0)}{(2 n)!}=(-1)^{n} \frac{1}{(2 n)!} \\
& \left.\frac{1}{(2 n+1)!} \frac{\mathrm{d}^{2 n+1} \cos (x)}{\mathrm{d} x^{2 n+1}}\right|_{x=0}=(-1)^{n+1} \frac{\sin (0)}{(2 n+1)!}=0
\end{aligned}
$$

10.

| MULTI | 1.0 point 0 penalty Single Shuffe |
| :--- | :--- | :--- |

Evaluate $\int \sqrt{1-x^{2}} \mathrm{~d} x$. Hint: A trigonometric substitution.
(a) $\frac{x \sqrt{1-x^{2}}}{2}+\frac{\arcsin (x)}{2}+C(100 \%)$
(b) $\frac{1}{\sqrt{1-x^{2}}}+\cos (x)+C$
(c) $\frac{\tan (2 x)}{2}+\frac{x e^{x}}{2}+C$
(d) $\sqrt{x}+\arctan (x)+C$

$$
\begin{gathered}
I=\int \sqrt{1-x^{2}} \mathrm{~d} x=\int \cos ^{2}(t) \mathrm{d} t \text { using substitution } x=\sin (t), \mathrm{d} x=\cos (t) \mathrm{d} t \\
I=\int \frac{\cos (2 t)+1}{2} \mathrm{~d} t=\frac{\sin (2 t)}{4}+\frac{t}{2}+C=\frac{\sin (t) \cos (t)}{2}+\frac{t}{2}+C= \\
=\frac{x \sqrt{1-x^{2}}}{2}+\frac{\arcsin (x)}{2}+C
\end{gathered}
$$

Total of marks: 10

