In Quantum Mechanics, it is commonly said that angular momentum 'generates' rotations, and in this exercise we will show this statement, starting from definitions:

- We say that H generates U if: $\mathrm{e}^{-i \varphi H}=U$ for some parameter φ.
- The Taylor expansion of a function f around a point a is defined as

$$
\mathcal{T}(f)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k} .
$$

1 (a) Find the Taylor expansions around $a=0$ for the functions: $\mathrm{e}^{x}, \quad \sin (x), \quad \cos (x)$. (From now on, you may assume that the Taylor expansions of these functions are equivalent to the functions themselves.)
(b) Given that $\hat{L}_{Z}=\left[\begin{array}{ccc}0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$, compute $\left(\hat{L}_{z}\right)^{2 k}$ and $\left(\hat{L}_{z}\right)^{2 k+1}$ for all $k \in \mathbb{N}_{0}$.

3 (c) Using b) and the Taylor expansions from a), show by summing explicitly that

$$
\mathrm{e}^{-i \varphi \hat{L}_{z}}=\mathcal{R}_{z}(\varphi) .
$$

Recall: From multiple choice questions we know that rotations around the z-axis are given by $\mathcal{R}_{z}(\varphi)=\left[\begin{array}{ccc}\cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1\end{array}\right]$.

Solution

(a) Before computing the Taylor expansions, we will first calculate the derivatives of the respective functions:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x} \mathrm{e}^{x}=\mathrm{e}^{x} \Longrightarrow \frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}} \mathrm{e}^{x}=\mathrm{e}^{x} \\
& \frac{\mathrm{~d}}{\mathrm{~d} x} \sin x=\cos x \\
& \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} \sin x=\frac{\mathrm{d}}{\mathrm{~d} x} \cos x=-\sin x \\
& \frac{\mathrm{~d}^{3}}{\mathrm{~d} x^{3}} \sin x=\frac{\mathrm{d}}{\mathrm{~d} x}(-\sin x)=-\cos x \\
& \Longrightarrow \frac{\mathrm{~d}^{4 k}}{\mathrm{~d} x^{4 k}} \sin x=\sin x \quad \frac{\mathrm{~d}^{4 k+1}}{\mathrm{~d} x^{4 k+1}} \sin x=\cos x \quad \frac{\mathrm{~d}^{4 k+2}}{\mathrm{~d} x^{4 k+2}} \sin x=-\sin x \quad \frac{\mathrm{~d}^{4 k+3}}{\mathrm{~d} x^{4 k+3}} \sin x=-\cos x \\
& \text { and } \quad \frac{\mathrm{d}^{4 k}}{\mathrm{~d} x^{4 k}} \cos x=\cos x \quad \frac{\mathrm{~d}^{4 k+1}}{\mathrm{~d} x^{4 k+1}} \cos =-\sin x \quad \frac{\mathrm{~d}^{4 k+2}}{\mathrm{~d} x^{4 k+2}} \cos =-\cos x \quad \frac{\mathrm{~d}^{4 k+3}}{\mathrm{~d} x^{4 k+3}} \cos =\sin x
\end{aligned}
$$

Therefore, the Taylor series are:

$$
\begin{aligned}
& \mathcal{T}\left(\mathrm{e}^{x}\right)=\left.\sum_{k=0}^{\infty} \frac{x^{k}}{k!}\left(\frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}} \mathrm{e}^{x}\right)\right|_{x=0}=\left.\sum_{k=0}^{\infty} \frac{x^{k}}{k!}\left(\mathrm{e}^{x}\right)\right|_{x=0}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \\
\mathcal{T}(\sin x)= & \left.\sum_{k=0}^{\infty} \frac{x^{k}}{k!}\left(\frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}} \sin x\right)\right|_{x=0} \\
= & \left.\sum_{k=0}^{\infty}\left\{\frac{x^{4 k}}{(4 k)!} \sin x+\frac{x^{4 k+1}}{(4 k+1)!} \cos x+\frac{x^{4 k+2}}{(4 k+2)!}(-\sin x)+\frac{x^{4 k+3}}{(4 k+3)!}(-\cos x)\right\}\right|_{x=0} \\
= & \sum_{k=0}^{\infty}\left(\frac{x^{4 k+1}}{(4 k+1)!}-\frac{x^{4 k+3}}{(4 k+3)!}\right) \\
= & \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!} \\
= & x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots
\end{aligned}
$$

$$
\left.\left.\begin{array}{rl}
\mathcal{T}(\cos x) & =\left.\sum_{k=0}^{\infty} \frac{x^{k}}{k!}\left(\frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}} \cos x\right)\right|_{x=0} \\
& =\left.\sum_{k=0}^{\infty}\left\{\frac{x^{4 k}}{(4 k)!} \cos x+\frac{x^{4 k+1}}{(4 k+1)!}(-\sin x)+\frac{x^{4 k+2}}{(4 k+2)!}(-\cos x)+\frac{x^{4 k+3}}{(4 k+3)!} \sin x\right\}\right|_{x=0} \\
& =\sum_{k=0}^{\infty}\left(\frac{x^{4 k}}{(4 k)!}-\frac{x^{4 k+2}}{(4 k+2)!}\right) \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!} \\
& =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots \\
\text { (b) }\left(\hat{L}_{Z}\right)^{2}=i\left[\begin{array}{lll}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \cdot i\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=-1\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \\
\text { Then }\left(\hat{L}_{Z}\right)^{2 k}=\left(\left(\hat{L}_{Z}\right)^{2}\right)^{k}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \\
\text { and }\left(\hat{L}_{Z}\right)^{2 k+1}=\left(\left(\hat{L}_{Z}\right)^{2 k}\right) \cdot\left(\hat{L}_{Z}\right)=\left[\begin{array}{ll}
1 & 0 \\
0 \\
0 & 1
\end{array} 0\right. \\
0 & 0 \\
0
\end{array}\right] \cdot\left[\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\hat{L}_{z}\right] .
$$

This holds for all $k \neq 0$, but for this case $\left(\hat{L}_{z}\right)^{0}=\mathbb{1}$ (the identity matrix).
3 (c) We compute:

$$
\begin{aligned}
e^{-i \varphi \hat{L}_{z}} & =\sum_{k=0}^{\infty} \frac{\left(-i \varphi \hat{L}_{z}\right)^{k}}{k!}=\sum_{k=0}^{\infty}\left(\frac{\left(-i \varphi \hat{L}_{z}\right)^{4 k}}{(4 k)!}+\frac{\left(-i \varphi \hat{L}_{z}\right)^{4 k+1}}{(4 k+1)!}+\frac{\left(-i \varphi \hat{L}_{z}\right)^{4 k+2}}{(4 k+2)!}+\frac{\left(-i \varphi \hat{L}_{z}\right)^{4 k+3}}{(4 k+3)!}\right) \\
& =\sum_{k=0}^{\infty}\left(\frac{\varphi^{4 k}\left(\hat{L}_{z}\right)^{4 k}}{(4 k)!}+\frac{\left(-i \varphi^{4 k+1}\right)\left(\hat{L}_{z}\right)^{4 k+1}}{(4 k+1)!}+\frac{\left(-\varphi^{4 k+2}\right)\left(\hat{L}_{z}\right)^{4 k+2}}{(4 k+2)!}+\frac{i \varphi^{4 k+3}\left(\hat{L}_{z}\right)^{4 k+3}}{(4 k+3)!}\right) \\
& =\sum_{k=0}^{\infty}\left(\frac{\varphi^{4 k}}{(4 k)!}-\frac{\varphi^{4 k+2}}{(4 k+2)!}\right)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]-i \sum_{k=0}^{\infty}\left(\frac{\varphi^{4 k+1}}{(4 k+1)!}-\frac{\varphi^{4 k+3}}{(4 k+3)!}\right)\left[\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =\cos (\varphi)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]-i \sin (\varphi)\left[\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

