In Quantum Mechanics, it is commonly said that angular momentum 'generates' rotations, and in this exercise we will show this statement, starting from definitions:

- We say that H generates U if: $\mathrm{e}^{-i \varphi H}=U$ for some parameter φ.
- The Taylor expansion of a function f around a point a is defined as

$$
\mathcal{T}(f)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k} .
$$

1 (a) Find the Taylor expansions around $a=0$ for the functions: $\mathrm{e}^{x}, \quad \sin (x), \quad \cos (x)$. (From now on, you may assume that the Taylor expansions of these functions are equivalent to the functions themselves.)
(b) Given that $\hat{L}_{Z}=\left[\begin{array}{ccc}0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$, compute $\left(\hat{L}_{z}\right)^{2 k}$ and $\left(\hat{L}_{z}\right)^{2 k+1}$ for all $k \in \mathbb{N}_{0}$.

3 (c) Using b) and the Taylor expansions from a), show by summing explicitly that

$$
\mathrm{e}^{-i \varphi \hat{L}_{z}}=\mathcal{R}_{z}(\varphi) .
$$

Recall: From multiple choice questions we know that rotations around the z-axis are given by $\mathcal{R}_{z}(\varphi)=\left[\begin{array}{ccc}\cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1\end{array}\right]$.

