Operations Research, Jacobs University, Fall 2022

We continue our example from last time:
Maximize $z=3 x_{1}+2 x_{2}$, subject to the constraints:

$$
\begin{array}{rl}
5 x_{1} & \leq 100 \\
10 x_{2} & \leq 100 \\
4 x_{1}+3 x_{2} & \leq 100 \\
3 x_{1}+5 x_{2} & \leq 100 \tag{4}\\
x_{11} x_{2} & ⿻ 0
\end{array}
$$

With the graphical method (or simplex method), we find that $s_{n}=0=s_{3}$, i.e., constraints (1) and (3) are binding (no slack).

So the optimal solution $x=\binom{x_{1}}{x_{2}}$ can be found from solving $\tilde{A} x=\tilde{b}$, with $\tilde{A}=\left(\begin{array}{cc}x_{1} & x_{2} \\ 5 & 0 \\ 4 & 3\end{array}\right) \leftarrow$ constraint (3),$\underset{b}{ } \in\binom{100}{100}$.
$\Rightarrow x=\tilde{A}^{-1} \tilde{b}$ and $Z=c^{\top} x=\underbrace{c^{\top} \tilde{A}^{-1}}_{=: \tilde{Y}} \tilde{b}$, where we define $\tilde{Y}=c^{\top} \tilde{A}^{-1}$,
and more generally, $Y=\left(\begin{array}{c}\tilde{Y}_{1} \\ 0 \\ \hat{Y}_{2} \\ 0\end{array}\right)$ putting 0 at the non-binding constraintsi here: (2) and (4)
Here concretely: $\tilde{Y}^{\top}=c^{\top} \tilde{A}^{-1}=(3,2)\left(\begin{array}{ll}5 & 0 \\ 4 & 3\end{array}\right)^{-1}=(3,2) \frac{1}{15}\left(\begin{array}{cc}3 & 0 \\ -4 & 5\end{array}\right)$

$$
=\frac{1}{15}(1,10) . \quad\left(\Leftrightarrow Y^{\top}=\frac{1}{15}(1,0,10,0)\right)
$$

Now: Change capacities b by a small amount i small meaning the binding constraints remain the same.

Then $b \rightarrow b+\delta$ and we find $x=\tilde{A}^{-1}(\tilde{b}+\tilde{\delta})$.

$$
\Rightarrow \text { new profit } z(\delta)=y^{\top}(b+\delta)=\underbrace{y^{\top} b}_{=z(0)}+y^{\top} \delta
$$

The $\gamma_{n} \ldots, Y_{m}$ are called shadow prices. These are the changes of profit per mit of capacity at current operating conditions.

Indeed, the following holds:
Theorem: The value of a company in terms of maximal profit from its operation equals the value of all its resources valued at the current shadow prices.

Proof: Set $\delta=-b$, so $Z(\delta)=Y^{\top}(b-b)=0$ (no resources, no operations, no profit) \rightarrow Note: this does not change the binding constraints (even though $\delta=-b$ is large), since we just rescale the feasible region proportionally.

Thus $Z(\delta)=Z(0)-y^{\top} b=0$, so $\underbrace{z(0)}_{\begin{array}{c}\text { value of the } \\ \text { company y }\end{array}}=\underbrace{y^{\top} b}_{\substack{\text { restores valued } \\ \text { at shadow pines }}}$.
In our example, we found $Y=\left(\begin{array}{c}1 / 15 \\ 0 \\ \frac{10}{15} \\ 0\end{array}\right)$. So for example, increasing the capacity of constraint (1) by one unit will increase the profit by $\frac{1}{15}$.

If we could choose to increase the working hours for either constraint, we should choose constraint (3) because this increases the profit the most.

Next: How to compute shadow prices directly (via solving the "dual" LP problem).

Recall the example: maximize profit $z=3 x_{1}+(2) x_{2}=c^{\top} x$

$$
\text { with constraints } \left.\begin{array}{rl}
\left(5 x_{1}\right. & \leq 100 \\
(10) x_{2} & \leq 100 \\
\left(4 x_{1}+(3) x_{2}\right. & \leq 100 \\
3 x_{1}+(5) x_{2} & \leq 100 \\
x_{1} x_{2} & \geq 0
\end{array}\right\} A x \leq b
$$

Now: Consider the following scenario: A company wants to buy our production capacity. What are fair prices $Y_{11} Y_{21} Y_{13} Y_{4}$ for the resources $(1),(2),(3),(4)$?

In our example:- profit per car: (3)

- profit per truck: (2)
- current car assembly hours: (5) for constraint (1), (4) for coustrinet (3), 3 for constraint (4)
- trucks: (10) for (2) , (3) for (3) , (5) for (4)

Thus we want: - $5 y_{r_{1}}+4_{y_{3}}+3_{y_{4}} \geqslant 3$) selling capacity to produce one carltrock needs to $-\underbrace{\left(10 y_{y_{2}}+(3)_{3}+(5)_{r_{4}}\right.}_{=A^{\top}} \geqslant \underbrace{2)}_{c}$ be at least as profitable as producing a car /track $=A^{\top} \quad c$
(Recall: $A=\left(\begin{array}{cc}5 & 0 \\ 0 & 10 \\ 4 & 3 \\ 3 & 5\end{array}\right) \Rightarrow A^{\top}=\left(\begin{array}{cccc}5 & 0 & 4 & 3 \\ 0 & 10 & 3 & 5\end{array}\right)$ is the transpose of A.)

The price for all capacity is $Y_{i} \cdot 100+\ldots+Y_{i} \cdot 100=b^{\top} Y$. Minimizing this yields the minimum prize.

This leads to the "dual problem:" - minimize $b^{\top} Y^{\prime}$,

- subject to $A^{\top} Y \geqslant c$ and $Y \geqslant 0$.
as compared to the original "primal problem": . maximize $c^{\top} x$,
- subject to $A x \leqslant b$ and $x \geqslant 0$.

Soling the dual problem gives us the shadow prices.
Two results about the relation between dual and primal $(P$:

- Note that $c^{\top} X=x^{\top} c \leq X^{\top} A^{\top} Y_{\uparrow}=(A X)^{\top} Y_{\uparrow} \leq b^{\top} Y$.

$$
c \leq A^{\top} Y \quad(A B)^{\top}=B^{\top} A^{\top} \quad A \times \leq b
$$

This is known as weak duality:
If x is a solution to the primal problem (ie. x is feasible, but not necessarily optimal), and Y is a solution to the dual problem, then $c^{\top} x \leq b^{\top} Y$.

- A bit harder to prove (but intuitively clear) is strong duality:

The dual has an optimal solution if and ont if the primal does. In this case $c^{\top} x=b^{\top} y$.

