Jacobs University Spring 2022

Advanced Calculus and Methods of Mathematical Physics

Homework 1

Due on February 15, 2022

Problem 1 [4 points]

Recall the mean value theorem of integral calculus: Suppose $g: [a, b] \to \mathbb{R}$ is Riemann integrable and non-negative, and $f: [a, b] \to \mathbb{R}$ is continuous. Then there exists $\xi \in [a, b]$ such that

$$f(\xi) \int_a^b g(x) \, \mathrm{d}x = \int_a^b f(x) g(x) \, \mathrm{d}x$$

Give an example each to show that the following assumptions cannot be generally dropped:

- (a) g is non-negative,
- (b) f is continuous.

Problem 2 [6 points]

Recall Taylor's theorem in the following form. Suppose $f \in C^{n+1}(I)$ for some open interval I. Then for all $c, x \in I$,

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x-c)^{k} + R_{n,c}(x)$$

where

$$R_{n,c}(x) = \frac{1}{n!} \int_c^x (x-t)^n f^{(n+1)}(t) \, \mathrm{d}t \, .$$

- (a) Turn the derivation shown in class into a formal proof by induction.
- (b) Show that the remainder can also be written as

$$R_{n,c}(x) = \frac{(x-c)^{n+1}}{n!} \int_0^1 (1-s)^n f^{(n+1)}(c+s(x-c)) \, \mathrm{d}s \, .$$

(c) Show that there exists $\xi \in [c, x]$ such that

$$R_{n,c}(x) = \frac{(x-c)^{n+1}}{(n+1)!} f^{(n+1)}(\xi) \,.$$

(This expression is known as the Lagrange form of the remainder.)

Problem 3 [4 points]

Compute in a smart way the 4-th order Taylor polynomials around c = 0 of $f(x) = e^x \sin(2x)$ and $g(x) = e^{\sin x}$.

Problem 4 [6 points]

In class, we discussed the following version of the Fundamental Theorem of Calculus. Let $f : [a, b] \to \mathbb{R}$ be integrable on [a, b] and continuous at $\tilde{x} \in (a, b)$. Define $F : [a, b] \to \mathbb{R}$ by $F(x) - F(a) := \int_a^x f(t) dt$. Then F is continuous on [a, b] and differentiable at \tilde{x} with $F'(\tilde{x}) = f(\tilde{x})$. Give a rigorous proof of this theorem.

Note: Recall the definitions of continuity and differentiability and try to start from there, using the assumptions of the theorem. If you are not so familiar with proofs, take a look at the Sloughter lecture notes (linked on the website), try to understand his proof, and write it down in your own words.