# Advanced Calculus and Methods of Mathematical Physics 

Homework 2

Due on February 22, 2022

## Problem 1 [5 points]

Give a proof of the (convergence part of the) ratio test that was discussed in class, i.e., prove that $\sum_{k=0}^{\infty} a_{k}$ converges if $\lim _{k \rightarrow \infty}\left|a_{k+1} / a_{k}\right|<1$. Hint: Suppose $\left|a_{k+1} / a_{k}\right|$ converges to $r<1$. Then, for large enough $N$, $\left|a_{N+1} / a_{N}\right|<R$ for some other $r<R<1$. What can you conclude, using your knowledge about the geometric series?

## Problem 2 [3 points]

Use any of the convergence tests discussed in class and in the lecture notes to determine whether the following series converges:
(a) $\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{k+1}$,
(b) $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$,
(c) $\sum_{k=1}^{\infty} \frac{e^{k}}{k}$.

## Problem 3 [2 points]

Determine the radius of convergence $\rho$ of the following power series:
(a) $\sum_{k=0}^{\infty} x^{k}$,
(b) $\sum_{k=1}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}$.

## Problem 4 [5 points]

Compute the Taylor series of $f(x)=\ln (1+x)$ around $c=0$, for $-1<x<1$. Show that the rest term indeed converges to 0 (for any $-1<x<1$ ). Does the Taylor series also converge for $x=1$ ? Does is converge for $x=-1$ ? Hint: Consider the integral form of the remainder.

## Problem 5 [5 points]

For any $\alpha \in \mathbb{R}$ on can define the following generalization of the binomial coefficient:

$$
\binom{\alpha}{k}:=\frac{\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-k+1)}{k!} .
$$

With that definition, let us define the function

$$
f(x)=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k}
$$

on the interval $(-1,1)$.
(a) Show that

$$
f^{\prime}(x)=\frac{\alpha}{1+x} f(x)
$$

Justify the steps of your argument.
(b) Show that

$$
g(x)=\frac{f(x)}{(1+x)^{\alpha}}
$$

equals the constant 1 .
(c) Conclude that $f(x)=(1+x)^{\alpha}$ on $(-1,1)$.

