Advanced Calculus and Methods of Mathematical Physics

Homework 5

Due on March 15, 2022

Problem 1 [5 points]

(a) Let $U \subset \mathbb{R}^{n}$ and $V \subset \mathbb{R}^{m}$ be open and let $f: U \rightarrow V$ be differentiable at $p \in U$ and $g: V \rightarrow \mathbb{R}^{j}$ be differentiable at $f(p)$. Prove that then the composition $F:=g \circ f: U \rightarrow \mathbb{R}^{j}$ is differentiable at p with derivative $\left.D F\right|_{p}=\left.\left.D g\right|_{f(p)} D f\right|_{p}$.
(b) Now check the chain rule for a specific example. Let $g(x, y):=e^{-x^{2}-y^{2}}$ and $f(r, \varphi):=$ $(r \cos \varphi, r \sin \varphi)$ and compute first $\left.D F\right|_{p}$ directly, and then $\left.\left.D g\right|_{f(p)} D f\right|_{p}$, for any $p=$ (r, φ).

Problem 2 [3 points]

Let $h:[0, \infty) \times[0,2 \pi) \times[0, \pi] \rightarrow \mathbb{R}^{3}$ be defined as

$$
h(r, \varphi, \theta):=(r \cos \varphi \sin \theta, r \sin \varphi \sin \theta, r \cos \theta) .
$$

This is the change from spherical to Cartesian coordinates. Compute the Jacobian matrix of h and its determinant.

Problem 3 [3 points]

Show that the function

$$
u: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}, x \mapsto \ln \|x\|
$$

solves the Laplace equation

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) u(x, y)=0
$$

(Here, $\|x\|=\sqrt{x^{2}+y^{2}}$ is the usual 2-norm.)

Problem 4 [5 points]

Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=x y\left(x^{2}-y^{2}\right) /\left(x^{2}+y^{2}\right)$ for $(x, y) \neq(0,0)$.
(a) Is f twice partially differentiable on $\mathbb{R}^{2} \backslash(0,0)$, and are the second derivatives continuous?
(b) Show that with $f(0,0)=0$ the function f is twice partially differentiable at $(0,0)$.
(c) Compute $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial^{2} f}{\partial y \partial x}$ at $(x, y)=(0,0)$. Should that be surprising?

Problem 5 [4 points]
Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=e^{-y^{2}}-x^{2}(y+1)$.
(a) Prove that $f \in C^{2}$ and write down the Taylor expansion to second order.
(b) Does f have local extrema? Are these also global extrema?

