Advanced Calculus and Methods of Mathematical Physics

Homework 5

Due on March 15, 2022

Problem 1 [5 points]

- (a) Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ be open and let $f: U \to V$ be differentiable at $p \in U$ and $g: V \to \mathbb{R}^j$ be differentiable at f(p). Prove that then the composition $F:=g \circ f: U \to \mathbb{R}^j$ is differentiable at p with derivative $DF|_p = Dg|_{f(p)} Df|_p$.
- (b) Now check the chain rule for a specific example. Let $g(x,y) := e^{-x^2-y^2}$ and $f(r,\varphi) := (r\cos\varphi, r\sin\varphi)$ and compute first $DF|_p$ directly, and then $Dg|_{f(p)}Df|_p$, for any $p = (r,\varphi)$.

Problem 2 [3 points]

Let $h:[0,\infty)\times[0,2\pi)\times[0,\pi]\to\mathbb{R}^3$ be defined as

$$h(r, \varphi, \theta) := (r \cos \varphi \sin \theta, r \sin \varphi \sin \theta, r \cos \theta).$$

This is the change from spherical to Cartesian coordinates. Compute the Jacobian matrix of h and its determinant.

Problem 3 [3 points]

Show that the function

$$u: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}, \ x \mapsto \ln \|x\|$$

solves the Laplace equation

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) u(x, y) = 0.$$

(Here, $||x|| = \sqrt{x^2 + y^2}$ is the usual 2-norm.)

Problem 4 [5 points]

Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x,y) = xy(x^2 - y^2)/(x^2 + y^2)$ for $(x,y) \neq (0,0)$.

- (a) Is f twice partially differentiable on $\mathbb{R}^2 \setminus (0,0)$, and are the second derivatives continuous?
- (b) Show that with f(0,0) = 0 the function f is twice partially differentiable at (0,0).

(c) Compute $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y \partial x}$ at (x, y) = (0, 0). Should that be surprising?

Problem 5 [4 points]

- Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x,y) = e^{-y^2} x^2(y+1)$. (a) Prove that $f \in C^2$ and write down the Taylor expansion to second order.
- (b) Does f have local extrema? Are these also global extrema?