Advanced Calculus and Methods of Mathematical Physics

Homework 6

Due on March 22, 2022

Problem 1 [3 points]

(Kantorovitz, p. 78, Exercise 6. Warm-up.) Let $f: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}$ be defined by

$$
f(x)=\sum_{i=1}^{k}\left(x_{i}, x_{i}^{2}, \ldots, x_{i}^{m}\right) .
$$

Compute the derivative $\left.D f\right|_{x}$.
Problem 2 [5 points]
(From Rudin, Exercise 9.17.) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
f(x)=\binom{e^{x_{1}} \cos x_{2}}{e^{x_{1}} \sin x_{2}}
$$

(a) What is the range of f ?
(b) Show that the Jacobian determinant, $\left.\operatorname{det} D f\right|_{x}$, is non-zero for every $x \in \mathbb{R}^{2}$. Thus every point in \mathbb{R}^{2} has a neighborhood in which f is one-to-one. Nevertheless, f is not one-to-one on \mathbb{R}^{2}.
(c) Put $a=(0, \pi / 3)$ and $b=f(a)$. Find an explicit formula for f^{-1}, compute $\left.D f\right|_{a}$ and $\left.D f^{-1}\right|_{b}$, and verify the formula for the derivative of the inverse from the statement of the inverse function theorem (i.e., $\left.D f^{-1}\right|_{b}=\left(\left.D f\right|_{a}\right)^{-1}$).
(d) What are the images under f of lines parallel to the coordinate axes?

Problem 3 [4 points]

(Kantorovitz, p. 106, Exercise 1.) Show that the equation

$$
x^{5}+y^{5}+z^{5}=2+x y z
$$

determines in a neighborhood of the point $(1,1,1)$ a unique function $z=z(x, y)$ of class C^{1}, and calculate its partial derivatives with respect to x and y at the point $(1,1)$.

Problem 4 [4 points]
Consider the equation

$$
\sqrt{x^{2}+y^{2}+2 z^{2}}=\cos z
$$

near $(0,1,0)$. Can you solve for x in terms of y and z ? For z in terms of x and y ?
Problem 5 [4 points]
Show that if r is a simple root of the polynomial

$$
p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

then r is a C^{1} function of the coefficients a_{0}, \ldots, a_{n}.

