Advanced Calculus and Methods of Mathematical Physics

Homework 6

Due on March 22, 2022

Problem 1 [3 points]

(Kantorovitz, p. 78, Exercise 6. Warm-up.) Let $f: \mathbb{R}^k \to \mathbb{R}^m$ be defined by

$$f(x) = \sum_{i=1}^{k} (x_i, x_i^2, \dots, x_i^m).$$

Compute the derivative $Df|_x$.

Problem 2 [5 points]

(From Rudin, Exercise 9.17.) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$f(x) = \begin{pmatrix} e^{x_1} \cos x_2 \\ e^{x_1} \sin x_2 \end{pmatrix}.$$

- (a) What is the range of f?
- (b) Show that the *Jacobian determinant*, det $Df|_x$, is non-zero for every $x \in \mathbb{R}^2$. Thus every point in \mathbb{R}^2 has a neighborhood in which f is one-to-one. Nevertheless, f is not one-to-one on \mathbb{R}^2 .
- (c) Put $a = (0, \pi/3)$ and b = f(a). Find an explicit formula for f^{-1} , compute $Df|_a$ and $Df^{-1}|_b$, and verify the formula for the derivative of the inverse from the statement of the inverse function theorem (i.e., $Df^{-1}|_b = (Df|_a)^{-1}$).
- (d) What are the images under f of lines parallel to the coordinate axes?

Problem 3 [4 points]

(Kantorovitz, p. 106, Exercise 1.) Show that the equation

$$x^5 + y^5 + z^5 = 2 + xyz$$

determines in a neighborhood of the point (1, 1, 1) a unique function z = z(x, y) of class C^1 , and calculate its partial derivatives with respect to x and y at the point (1, 1).

Problem 4 [4 points]

Consider the equation

$$\sqrt{x^2 + y^2 + 2z^2} = \cos z$$

near (0,1,0). Can you solve for x in terms of y and z? For z in terms of x and y?

Problem 5 [4 points]

Show that if r is a simple root of the polynomial

$$p(x) = a_0 + a_1 x + \dots + a_n x^n$$
,

then r is a C^1 function of the coefficients a_0, \ldots, a_n .