Jacobs University Spring 2022

Advanced Calculus and Methods of Mathematical Physics

Homework 11

Due on May 3, 2022

Problem 1 [6 points]

(Kantorovitz, Exercises 4.4.5, Problems 1, 2, 3.) Find the area S(D) of the domain $D \subset \mathbb{R}^2$ with given boundary $\partial D = \gamma$ for the cases where:

(a) γ is the *cardioid* parameterized by

$$\gamma(t) = (1 - \cos t)(\cos t, \sin t), \quad t \in [0, 2\pi]$$

(b) γ is the hypocycloid satisfying the equation

$$\left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}} = 1$$

with a, b > 0. (*Hint:* Find a trigonometric parametrization.)

(c) γ is the curve with parametrization

$$\gamma(t) = (t^2 - 1)(1, t), \quad t \in [-1, 1].$$

Problem 2 [7 points]

(From Moskowitz/Paliogiannis, p. 460.) Evaluate the following line integrals along a curve γ , both directly and by using Green's theorem:

- (a) $\int_{\gamma} \left[(1-x^2) y \, dx + (1+y^2) x \, dy \right]$, where γ is the unit circle in anti-clockwise orientation.
- (b) $\int_{\gamma} \left[x y^2 dy x^2 y dx \right]$, where γ is the boundary of the annulus $1 \leq x^2 + y^2 \leq 4$, in standard orientation (i.e., counter-clockwise for the outer circle and clockwise for the inner circle).
- (c) $\int_{\gamma} \left[(y \sin x) \, dx + \cos x \, dy \right]$, where γ is the perimeter of the triangle with vertices (0, 0), $(\frac{\pi}{2}, 0)$, and $(\frac{\pi}{2}, 1)$ in counter-clockwise orientation.

Problem 3 [7 points]

Prove the following identities for vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d} \in \mathbb{R}^3$.

(a) The "BAC-CAB-identity"

$$\boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c}) = \boldsymbol{b} (\boldsymbol{a} \cdot \boldsymbol{c}) - \boldsymbol{c} (\boldsymbol{a} \cdot \boldsymbol{b}).$$

(b) The Jacobi identity in three dimensions

$$\boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c}) + \boldsymbol{b} \times (\boldsymbol{c} \times \boldsymbol{a}) + \boldsymbol{c} \times (\boldsymbol{a} \times \boldsymbol{b}) = 0.$$

(c) The Cauchy–Binet formula in three dimensions

$$(\boldsymbol{a} \times \boldsymbol{b}) \cdot (\boldsymbol{c} \times \boldsymbol{d}) = (\boldsymbol{a} \cdot \boldsymbol{c}) (\boldsymbol{b} \cdot \boldsymbol{d}) - (\boldsymbol{a} \cdot \boldsymbol{d}) (\boldsymbol{b} \cdot \boldsymbol{c}).$$

Then, show that $\|\boldsymbol{a} \times \boldsymbol{b}\| = \|\boldsymbol{a}\| \|\boldsymbol{b}\| \sin \theta$ (which equals the area of a parallelogram spanned by \boldsymbol{a} and \boldsymbol{b}), where θ is the angle between \boldsymbol{a} and \boldsymbol{b} .