Advanced Calculus and Methods of Mathematical Physics

Homework 11

Due on May 3, 2022

Problem 1 [6 points]

(Kantorovitz, Exercises 4.4.5, Problems 1, 2, 3.) Find the area $S(D)$ of the domain $D \subset \mathbb{R}^{2}$ with given boundary $\partial D=\gamma$ for the cases where:
(a) γ is the cardioid parameterized by

$$
\gamma(t)=(1-\cos t)(\cos t, \sin t), \quad t \in[0,2 \pi] .
$$

(b) γ is the hypocycloid satisfying the equation

$$
\left(\frac{x}{a}\right)^{\frac{2}{3}}+\left(\frac{y}{b}\right)^{\frac{2}{3}}=1
$$

with $a, b>0$. (Hint: Find a trigonometric parametrization.)
(c) γ is the curve with parametrization

$$
\gamma(t)=\left(t^{2}-1\right)(1, t), \quad t \in[-1,1] .
$$

Problem 2 [7 points]

(From Moskowitz/Paliogiannis, p. 460.) Evaluate the following line integrals along a curve γ, both directly and by using Green's theorem:
(a) $\int_{\gamma}\left[\left(1-x^{2}\right) y \mathrm{~d} x+\left(1+y^{2}\right) x \mathrm{~d} y\right]$, where γ is the unit circle in anti-clockwise orientation.
(b) $\int_{\gamma}\left[x y^{2} \mathrm{~d} y-x^{2} y \mathrm{~d} x\right]$, where γ is the boundary of the annulus $1 \leq x^{2}+y^{2} \leq 4$, in standard orientation (i.e., counter-clockwise for the outer circle and clockwise for the inner circle).
(c) $\int_{\gamma}[(y-\sin x) \mathrm{d} x+\cos x \mathrm{~d} y]$, where γ is the perimeter of the triangle with vertices $(0,0)$, $\left(\frac{\pi}{2}, 0\right)$, and $\left(\frac{\pi}{2}, 1\right)$ in counter-clockwise orientation.

Problem 3 [7 points]

Prove the following identities for vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d} \in \mathbb{R}^{3}$.
(a) The "BAC-CAB-identity"

$$
a \times(b \times c)=b(a \cdot c)-c(a \cdot b) .
$$

(b) The Jacobi identity in three dimensions

$$
\boldsymbol{a} \times(\boldsymbol{b} \times \boldsymbol{c})+\boldsymbol{b} \times(\boldsymbol{c} \times \boldsymbol{a})+\boldsymbol{c} \times(\boldsymbol{a} \times \boldsymbol{b})=0 .
$$

(c) The Cauchy-Binet formula in three dimensions

$$
(\boldsymbol{a} \times \boldsymbol{b}) \cdot(\boldsymbol{c} \times \boldsymbol{d})=(\boldsymbol{a} \cdot \boldsymbol{c})(\boldsymbol{b} \cdot \boldsymbol{d})-(\boldsymbol{a} \cdot \boldsymbol{d})(\boldsymbol{b} \cdot \boldsymbol{c}) .
$$

Then, show that $\|\boldsymbol{a} \times \boldsymbol{b}\|=\|\boldsymbol{a}\|\|\boldsymbol{b}\| \sin \theta$ (which equals the area of a parallelogram spanned by \boldsymbol{a} and \boldsymbol{b}), where θ is the angle between \boldsymbol{a} and \boldsymbol{b}.

