Advanced Calculus and Methods of Mathematical Physics

Homework 12

Due on May 10, 2022

Problem 1 [5 points]

(Kantorovitz, Exercises 4.5.7, Problem 6.) A smooth curve is given in the $y z$-plane by the parameterization

$$
\gamma(t)=(0, y(t), z(t)), \quad t \in[a, b] .
$$

The surface M is obtained by revolving γ about the z-axis.
(a) Show that M has surface area

$$
\sigma(M)=2 \pi \int_{\gamma}|y| \mathrm{d} s=2 \pi \int_{a}^{b}|y(t)|\left\|\gamma^{\prime}(t)\right\| \mathrm{d} t
$$

(b) Take γ to be the circle centered at $(0, R, 0)$ with radius $r \in(0, R)$ in the $y z$-plane, so that M is a torus. Find the area of the torus M.

Problem 2 [5 points]

Show, by explicit computation, that the surface area of a smooth regular surface M with parameterization $f \in C^{1}\left(U \rightarrow \mathbb{R}^{3}\right)$,

$$
\sigma(M)=\int_{U}\|n\| \mathrm{d} S=\int_{U}\left\|\frac{\partial f}{\partial u_{1}} \times \frac{\partial f}{\partial u_{2}}\right\| \mathrm{d} u
$$

is independent of the parameterization. I.e., if $g \in C^{1}\left(V, \mathbb{R}^{3}\right)$ is another smooth regular parameterization with $g=f \circ \phi$ for some $\phi \in C^{1}(V, U)$, then

$$
\sigma(M)=\int_{V}\left\|\frac{\partial g}{\partial v_{1}} \times \frac{\partial g}{\partial v_{2}}\right\| \mathrm{d} v
$$

Hint: Use chain rule, change-of-variable formula, and the properties of the cross-product.

Problem 3 [5 points]

(Kantorovitz, Exercises 4.5.7, Problem 4.) Let $F=\left(x y, 0,-z^{2}\right), D=[0,1]^{3}$, and $M=\partial D$ oriented such that the normal vector points outwards. Calculate the flux

$$
\Phi=\int_{M} F \cdot n \mathrm{~d} \sigma
$$

(a) by applying the divergence theorem,
(b) directly.

Problem 4 [5 points]

(Kantorovitz, Exercises 4.5.7, Problem 7.) Let γ be the closed curve parameterized by

$$
\gamma(t)=(\cos t, \sin t, \cos 2 t), \quad t \in[0,2 \pi] .
$$

Let M be the portion of the hyperbolic paraboloid S defined by the equation

$$
z=x^{2}-y^{2}
$$

with boundary γ (note that γ lies on S !). Calculate the line integral

$$
\int_{\gamma} F \cdot \mathrm{~d} x
$$

for the vector field $F=\left(x^{2}+z^{2}, y, z\right)$
(a) by applying Stokes' theorem,
(b) directly.

