Finally, we briefly discuss the notion of compactness.
Recall that we call a subset of TR" open if it can be written as the union of open balls

$$B_{x}(x) := \{y \in TR": ||x-y|| \le \gamma\}$$
.
Where specified otherwise, we always mean $||x||^{2} := \sum_{i=1}^{n} x_{i}^{2}$ for $x \in TR$ "

A set
$$E \in TR^{"}$$
 is called compact if every open cover of E has a finite subcover.
A family of open sets (V_x) such that

 $V_x > E$.

 $V_x > E$.

 $V_x > E$.

 $V_x > E$.

Important result: As in TR, the Heine-Borel theorem also holds in TR":

This implies, e.g., that continuous functions E-TR, TR">E compact, attain their maximum and minimum.

$$\frac{E_{X,:}}{B_r(x)} := \{y \in \mathbb{TR}^n : ||x-y|| \le r\} \text{ is closed and bounded} \}$$

2.1 Total and Partial Derivatives

Some notation: • We write vectors $x \in TR^n$ as $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. • Special vectors are the basis vectors $e_j = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = j$ -th component, i.e., $x = \sum_{j=1}^n x_j e_j$

Recall that for functions
$$f: \mathbb{R} \to \mathbb{R}$$
 we defined differentiability at \tilde{x} as:
 $\exists m \in \mathbb{R} \ st.$ for small enorgy $h: f(\tilde{x}+h) = f(\tilde{x}) + mh + r_{\chi}(h)$, with $\lim_{h \to 0} \left| \frac{r_{\chi}(h)}{h} \right| = 0$.
Clearly, $L_{\mu}: \mathbb{R} \to \mathbb{R}$, $h \mapsto wh$ is a linear map.
The idea "derivatives are the best linear approximation" can be generalized:
 $\frac{Definition:}{L} (et \ H \subset \mathbb{R}^{n} \ be open \ and \ f: \ H \to \mathbb{R}^{m}$. Then f is called differentiable at $\tilde{x} \in \mathcal{U}$
if there is a linear map $A: \mathbb{R}^{n} \to \mathbb{R}^{m} \ s.t$.
 $f(\tilde{x}+h) = f(\tilde{x}) + Ah + r_{\chi}(h)$ with $\lim_{h \to 0} \frac{|Ir_{\chi}(h)|I|}{|Ih|I|} = 0$.
In other words: $\lim_{h \to 0} \frac{|If(\tilde{x}+h) - f(\tilde{x}) - Ah|I|}{|Ih|I|} = 0$.
We call $A = Df|_{\tilde{x}} = f'(\tilde{x})$ the total derivative of f at \tilde{x} .
If f is differentiable for all $\tilde{x} \in \mathcal{U}$, we say f is differentiable in \mathcal{U} .