Advanced Calculus and Methods of Mathematical Physics

Finally, we betty discuss the notion of compactness.
Recall that we call a subset of \mathbb{R}^{n} open if it can be mitten as the union of open balls

$$
B_{r}(x):=\{y \in \mathbb{R}^{u}: \underbrace{\|x-y\|} \leqslant y\} .
$$

unless specified otherwise, we alkanes mean $\|x\|^{2}:=\sum_{i=1}^{n} x_{i}^{2}$ for $x \in \mathbb{R}^{n}$
A set $E \subset \mathbb{R}^{n}$ is called compact if every open cover of E has a finite subcover.

$$
\rightarrow \text { A family of open sets }\left(V_{\alpha}\right) \text { such that } \quad \text { A subfamily of the open cover }
$$

$$
\bigcup_{\alpha} V_{\alpha} \supset E .
$$ with friteley many elements.

Important result: As in \mathbb{R}, the Heine-Borel theorem also holds in \mathbb{R}^{n} :
$E \subset \mathbb{R}^{n}$ is compact \Leftrightarrow, E closed and bounded.

$$
\underbrace{\underbrace{}_{\text {Br }(x)} \text { for some } r>0, x \in \mathbb{R}^{n} .}_{\substack{\text { it castings all } \\ \text { its } \text { limit points }}}
$$

This implies, eeg, that continuous functions $E \rightarrow \mathbb{R}, \mathbb{R}^{n}>E$ compact, attain their maximin and minimus.

Ex.: • \mathbb{R}^{n} is not compact, since it is not bounded (\mathbb{R}^{n} is closed (and open)).

- $B_{r}(x)$ is not compact, since it is not closed ($B_{r}(x)$ is bounded).
- $\overline{B_{r}(x)}:=\left\{y \in \mathbb{R}^{n}:\|x-y\| \leq r\right\}$ is closed and bounded, and thus compact.

2. Derivatives
2.1 Total and Partial Derivatives

Some notation:

- We write vectors $x \in \mathbb{R}^{n}$ as $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$.
- Special vectors are the basis vectors $e_{j}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ \vdots\end{array}\right)$ th component, ie., $x=\sum_{j=1}^{n} x_{j} e_{j}$

Recall from linear Algebra:

- A map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if $L(\lambda x+y)=\lambda L(x)+L(y) \quad \forall x, y \in \mathbb{R}^{n}, \lambda \in \mathbb{R}$. For linear maps we usually write $L(x)=L x$.
- linear maps $l: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are in one-to-oue correspondence to $m \times n$ matrices

$$
\begin{aligned}
& =\sum_{j} x_{j} \underbrace{}_{\equiv: \alpha_{i j}\left(\tilde{N}_{i j}, L_{0}\right)} .
\end{aligned}
$$

Recall $(A x)_{i}=\sum_{j=1}^{n} a_{i j} x_{j},(A B)_{i k}=\sum_{j=1}^{n} a_{i j} b_{j k}$ for A m xu, and $B_{n \times p}=a_{i j}$ matrix. (then $A B$ is an map matrix)

- For linear maps $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ we define the operator norm $\|L\|:=\sup _{n \in \mathbb{R}^{n}}\|L u\|<\infty$ $\|u\|=1$ since unit sphene is compact and L linear (thess continuous), the maximum is attained
Since $\left\|C \frac{u}{\|u\|}\right\| \leq\|L\|$, we have $\|L u\| \leq\|L\|\|u\|$. (for at least one $u \in \mathbb{R}^{n}$)

Recall that for functions $f: \mathbb{R} \rightarrow \mathbb{R}$ we defined differentiability at \tilde{x} as: $\exists m \in \mathbb{R}$ st. for small enough $h: f(\tilde{x}+h)=f(\tilde{x})+m h+r_{x}(h)$, with $\lim _{h \rightarrow 0}\left|\frac{r_{x}(h)}{h}\right|=0$.

Clearly, $L_{m}: \mathbb{R} \rightarrow \mathbb{R}, h \mapsto m h$ is a linear map.
The idea "derivatives are the best linear approximation" can be generalized:
Definition: Let $U \subset \mathbb{R}^{n}$ be open and $f: U \rightarrow \mathbb{R}^{m}$. Then f is called differentiable at $\tilde{x} \in U$ if there is a linear map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ s.t.

$$
f(\tilde{x}+h)=f(\tilde{x})+A h+r_{\tilde{x}}(h) \quad \text { with } \lim _{h \rightarrow 0} \frac{\left\|r_{x}(h)\right\|}{\|h\|}=0 \text {. }
$$

In other words: $\lim _{h \rightarrow 0} \frac{\| f(x) h)-f(\hat{x})-A h \|}{\|h\|}=0$.
We call $\left.A \equiv D f\right|_{\tilde{x}} \equiv f^{\prime}(\tilde{x})$ the total derivative of f at \tilde{x}.
If f is differentiable for all $\tilde{x} \in U$, we say f is differentiable in U.

