Advanced Calculus and Methods of Mothematical Physics
Prof. Soven Petrat, Jacobs University, Spring 2020
(ast fime, we introduced the Hessian
$$H_{\xi}$$
 of a function $f: h \rightarrow \mathbb{R}$ ($H \in \mathbb{R}^n$ open) as
 $(H_{\xi})_{ij} := \frac{2^2\xi}{2\pi \partial x_j}$. For $f \in \mathbb{C}^2$, we found $(H_{\xi})_{ij} = (H_{\xi})_{ji}$ ((laired, Schwarz).
The Hessian can be used to determine whether an extremum is a maximum or winimum:
Theorem: let $f: h \rightarrow \mathbb{R}$, $h \in \mathbb{R}^n$ open, $f \in \mathbb{C}^2(h)$, with $(\mathbb{P})_{|X|} = 0$ for some $x \in h$.
Then:
 \cdot If $H_{\xi}(x)$ is positive definite (i.e., $ch, H_{\xi}(x)h > 0 \forall h \in \mathbb{R}^n, h \neq 0$), then f
has a local minimum at x .
 \cdot If $H_{\xi}(x)$ is negative definite (i.e., $ch, H_{\xi}(x)h > 0 \forall h \in \mathbb{R}^n, h \neq 0$), then f
has a local minimum at x .
 \cdot If $H_{\xi}(x)$ is negative definite (i.e., $ch, H_{\xi}(x)h > 0 \forall h \in \mathbb{R}^n, h \neq 0$), then f
has a local minimum at x .
 \cdot If $H_{\xi}(x)$ is negative definite (i.e., $ch, H_{\xi}(x)h > 0 \forall h \in \mathbb{R}^n, h \neq 0$), then f
has a local minimum at x .
 \cdot If $H_{\xi}(x)$ is negative definite (i.e., $ch, H_{\xi}(x)h < 0 \forall h \in \mathbb{R}^n, h \neq 0$), then f
has a local maximum at x .
 \cdot Note: Follows from the Taylor expansion (moking h very small). \Box
 $Note:$ Since H is symmetric, all eigenvalues are real. Then H is positive definite

A very simple example:
$$f(x,y) = -x^2 - y^2$$
.
 $\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} = \begin{pmatrix} -2x \\ -2y \end{pmatrix}$. $\nabla f = 0$ for $(x,y) = (0,0)$.
 $H_f((x,y) = (0,0)) = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}_1$ so $H_f(0)$ is negative definite.
 $= > f$ has a maximum at $(0,0)$.

Ofher examples (see geodebra pictures below):
•
$$f(x,y) = x^2 - y^2 + d = > H_{1}(0,0) = \begin{pmatrix} 3 & 0 \\ 0 & -d \end{pmatrix} =>$$
 Saddle point
($ch,H_{1}h > 0$ for some h, and
 $ch,H_{2}h > c$ for of hers)
• $f(x,y) = x^2 - y^2 + d = = H_{1}(0,0) = \begin{pmatrix} 0 & 0 \\ 0 & -d \end{pmatrix} =>$ degenerate point
($ch,H_{2}h > c$ for some hell."

$$f(x,y) = y^{3} - 3x^{2}y + \lambda = H_{f}(0,0) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = degenerate point$$
("monkey saddle", see pictures)

The following pictures were generated with <u>https://www.geogebra.org/3d</u>.

 $f(x, y) = x^3 - y^2 + 2$

$$f(x, y) = y^{3} - 3x^{2}y + 2$$

("Monkey Saddle")

