Advanced Calculus and Methods of Mothematical Physics
Prof. Sören Petrat, Jacobs University, Spring 2022
2.3 The Inverse and Implicit Function Theorems
Question: Under which conditions is
$$f: U \rightarrow TR^n$$
 (UCTR" open) invertible?
Here f goes from a subset of TR" into a subset of TR".
And: If f is invertible and differentiable, is then f^{-1} also differentiable?
Here inverse of f

From Analysis and Calculus we know the case
$$n=1$$
:
If f is continuously differentiable and $f'(p) \neq 0$, then f is invertible in a
neighborhood of p, f^{-1} is continuously differentiable, and $(f^{-1})'(f(p)) = \frac{1}{f'(p)}$.
If $f(p)=q$, then $(f^{-1})'(q) = \frac{1}{f'(f^{-1}(q))}$
For general n, we have the following theorem.
Theorem (Inverse Function Theorem):

Note:
• Dflp invertible (=> The Jacobian matrix
$$J_{ij}(p) = \frac{\partial f_i(p)}{\partial x_j}$$
 is invertible.
• Using the chain rule we find: $1 = D(f^{-1} \circ f)|_p = Df^{-1}|_{f(p)} Dflp$
 $=> Df^{-1}|_{f(p)} = (Dflp)^{-1}$ identity derivative of chain rule
 $Df^{-1}|_{f(p)} = (Dflp)^{-1}$ on TR^n $f^{-1}(f(x)) = x$
• The inverse for the implies: The system of equations $f_i(x_{n,...,}x_n) = Y_i$, $i = 1,...,n$
can be solved for $x_{n,...,}x_n$ in terms of $Y_{n,...,}y_n$, $if x$ and y are in small enough weighborhoods of p and q .

•
$$|\{f_{i}\} = W$$
 is C_{i}^{k} and f_{i}^{-1} exists and is C_{i}^{k} then f_{is} called a C_{i}^{k} diffeomorphism
• $|\{f_{i} = w_{i}\} = V$ has a neighborhood \tilde{V} s.t. $f|_{\tilde{V}}: \tilde{V} \rightarrow f(\tilde{V})$ is a diffeomorphism, then f_{is} called a local diffeomorphism.

For the proof, we use an important theorem.
First, on a metric space
$$(X,d)$$
, a map $f: X \rightarrow X$ is called a contraction if
there is $0 \le c \le 1$ s.t. $d(f(x), f(y)) \le c d(x, y)$.
A point $x^* \in X$ is called fixed point if $f(x^*) = x^*$.

Note: Suppose
$$f$$
 is a contraction and it has two fixed points: $f(x_1) = x_1$, $f(x_2) = x_2$.
Then $d(x_{n_1} \times x_2) = d(f(x_1), f(x_2)) \leq c d(x_{n_1} \times x_2)$ with $0 < c \leq 1$, which
implies $d(x_{n_1} \times x_2) = 0$, i.e., $x_1 = x_2$.
So if a contraction has a fixed point, then it is might.

.

Moreover:

Banach Fixed-Point Theorem (or: Contraction Mapping Principle):
If X is a complete metric space, then any contraction
$$f: X \rightarrow X$$
 has a
Unique fixed point.

Proof: See Nomemork 4.
(Define
$$x_{n_{n}} := f(x_n)$$
 $\forall n$ and show that (x_n) is Cauchy $= 5$ kinit x^* exist
since X is complete $= 5$ $f(x^*) = f(\lim_{n \to \infty} |x_n|) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n_n} = x^*$.)
 $f(x^*) = f(x^*) = f(\lim_{n \to \infty} |x_n|) = \lim_{n \to \infty} x_{n_n} = x^*$.

Note: This proof gives us on explicit may be construct the fixed point:
It is the limit of the sequence
$$\chi_{uec} = f(x_u)$$
.
(1.e., choose come x_u , then $\chi_{uec} = f(x_u)$, $\chi_u = f(x_u)$.)
Example: Newton's method for finding corres of $f(x)$.
(Extra example ont consider in the in-point class)
We greass/hope that the interview $\chi_{uec} = \chi_u - \frac{f(x_u)}{f(x_u)} =: F(x_u)$ converges to a zero
of f. Suppose $f(x^u)=0$, $f'(x^u)\pm0$. Then $F(x^u)=x^u$, i.e., χ^u is a
fixed point of the map F.
With the Zanachi Fixed. First Theorem we could now find sufficient conditions
for Neutron's wellow to converge by constructing a suitable complete metric space X
on which F maps $X \to X$ and is a contraction.
E.g.: For $f(x)=x^u-3$, we have $F(x)=x-\frac{f(x)}{f(x)}=x-\frac{x^{2}-3}{2x}=\frac{1}{2}(x+\frac{3}{x})$.
Hence $F:[G(x_0) \longrightarrow [G(x_{100})]$, i.e., we can choose $X = [G(x_{100})]$ (which is closed,
so X with the standard watric (absolute value) is indeed complete).
Is F a contraction on $X \stackrel{2}{:}$
 $d(F(x), F(y))=|F(x)-F(y)|=\frac{1}{2}|(x+\frac{3}{x})-(y+\frac{3}{x})|$
 $=\frac{1}{2}|x-y+3(\frac{4}{x}-\frac{1}{y})|=\frac{1}{2}|(x-y)(1-\frac{3}{xy})|$
 $=\frac{4}{2}|x-y|+3(\frac{4}{x}-\frac{1}{y})|=\frac{4}{2}|(x-y)|$, so yee, F is a contraction.

So, by Banach's fixed point thun,
$$x_{u+n} = F(x_u)$$
 converges to the unique fixed point $x^* = \sqrt{3}$ for any initial $x_0 \in (\sqrt{3}, \infty)$.

(In fact, for
$$X_o \in (0, \sqrt{3})$$
, we have $X_1 = F(X_o) = \frac{1}{2}(X_o + \frac{3}{X_o}) > \sqrt{3}$, so we could use any $X_o > 0$ as initial point for the iteration.)