Theorem (Implicit Function Theorem):
let
$$W \in \mathbb{R}^{nem}$$
 be open, $f: U \to \mathbb{R}^n$ be $C^{1}(U)$, and $f(p,q)=0$ for some $(p,q) \in U$.
We assume that $\frac{\partial f}{\partial x}(p,q) = \begin{pmatrix} \frac{\partial f_1}{\partial x_n} & \cdots & \frac{\partial f_n}{\partial x_n} \\ \vdots & \vdots \\ \frac{\partial f_n}{\partial x_n} & \cdots & \frac{\partial f_n}{\partial x_n} \end{pmatrix} \Big|_{(p,q)}$ is invertible.
Then there are open sets $V \in \mathbb{R}^{nem}$ and $W \in \mathbb{R}^m$ with $(p,q) \in V, q \in W$ s.t. to every $Y \in W$
corresponds a unique X s.t. $(x,y) \in V$ and $f(x,y) = 0$. (f this $X := q \mid y$), then $q: W \to \mathbb{R}^n$
is $C^1, q(q) = p, f(p(y), y) = 0$, and $Dq|_q = -(\frac{\partial t}{\partial x})^{-1}|_{(p,q)} = \frac{\partial f}{\partial Y}|_{(p,q)}$.

In our example above:
$$f(x,y) = x^2 + y^2 - 1$$
, $x \neq 0$.
 $= > o_1(y) := \sqrt{1-y^2}$ for $y > 0 = > f(g(x), y) = 0$ and $\frac{\partial x}{\partial y} = -\frac{\frac{\partial f}{\partial y}}{\frac{\partial x}{\partial x}} = -\frac{-\lambda}{\sqrt{1-y^2}} \sqrt{1-y^2}$

Idea of proof:
We define
$$F: \mathcal{N} \to \mathbb{R}^{utm}$$
 by $F(x, \gamma) := \begin{pmatrix} f(m, \gamma) \\ \gamma \end{pmatrix}$.
Then $F(p,q) = (0,q)$ and $DF|_{(p,q)} = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial \gamma} \\ 0 & \underline{AL} \\ \frac{\partial \gamma}{\partial x} & \frac{\partial \gamma}{\partial \gamma} \end{pmatrix}$.

=> det DFI(1914) = det $\frac{\partial f}{\partial x}|_{(p,q)} \mp 0$, so DFI(1914) is invertible and we can use the

inverse fct. thus. to invert
$$\mp$$
 in neighborhoods V of (p_1q_1) and W of $(0,q_1)$.
If $(0,y) \in W$, then $(0,y) = F(x,y)$ for some $(x,y) \in V$, i.e., $f(x,y) = 0$.

D

An application:

A surface
$$M \in TR^3$$
 can be defined via $F(x,y,z)=0$, $F:U \to TR^3$, i.e.,
 $M = \{(x,y,z) \in U: F(x,y,z)=0\}$. Then the implicit fol. thus tells us that if
 $F \in C^1(U)$ and $\frac{\partial F}{\partial z} \neq 0$, then locally the surface can be defined via the
explicit equation $z = \Phi(x,y)$.
Surfaces are special cases of manifolds, a concept that will be introduced
in Analysis III.

$$\frac{3 \cdot |u|^{4} equals}{(euvandly, fluere are 3 ways to integrate in many variables:
• Successive 1-dim. Riamann integrals: $\int_{a}^{b} f(x_n x_n) dx_n = \int_{a}^{b} \left(\int_{a}^{b} f(x_n x_n) dx_n\right) dx_n$.
Then an important question is: $(S = \int_{a}^{b} (\int_{a}^{b} f(x_n x_n) dx_n) dx_n = \int_{a}^{b} (\int_{a}^{b} f(x_n x_n) dx_n) dx_n$?
• Re-define the Riamann integral in u-dim, using partitions of \mathbb{R}^{N} .
Question: Is it equal to successive 1-dim. integration?
• (abassque integral: see Analysis III.
We start have with considering partial integrals $F(y) = \int_{a}^{b} f(x_n y) dx_n$.$$