Foundations of Mathematical Physics

Homework 11

Due on Nov. 30, 2023, before the tutorial.

Problem 1 [4 points]: Operator bounds

Let A, B be densely defined linear operators with $D(A) \subset D(B)$. Prove that the following two statements are equivalent:

(i) There are $a, b \ge 0$ such that

$$||B\varphi|| \le a \, ||A\varphi|| + b \, ||\varphi||$$

for all $\varphi \in D(A)$.

(ii) There are $\tilde{a}, \tilde{b} \geq 0$ such that

$$||B\varphi||^2 \le \tilde{a}^2 ||A\varphi||^2 + \tilde{b} ||\varphi||^2$$

for all $\varphi \in D(A)$.

Prove also that the infimum over all permissible a in (i) coincides with the infimum over all permissible \tilde{a} in (ii).

Problem 2 [8 points]: Self-adjointness

Let $V: \mathbb{R}^3 \to \mathbb{R}$ be such that $V \in L^2(\mathbb{R}^3) + L^{\infty}(\mathbb{R}^3)$. Prove that then V is infinitesimally H_0 -bounded, where $H_0 = -\frac{1}{2}\Delta$ with domain $D(H_0) = H^2(\mathbb{R}^3)$. With Kato-Rellich, this implies that $H = H_0 + V$ is self-adjoint on $D(H_0)$. Also use this result to prove that $H_0 + \frac{\lambda}{|x|}$ is self-adjoint on $H^2(\mathbb{R}^3)$ for all $\lambda \in \mathbb{R}$. Hint: Prove that for all a > 0 there is a b > 0 such that for all $\varphi \in H^2(\mathbb{R}^3)$ we have $\|\varphi\|_{L^{\infty}} \leq a\|\Delta\varphi\|_{L^2} + b\|\varphi\|_{L^2}$.

Problem 3 [8 points]: Projectors

For $\varphi \in L^2(\mathbb{R}^3)$ with $\|\varphi\| = 1$, we define for any $0 \le k \le N$ the bounded operator

$$P_{N,k}^{\varphi} := \sum_{\boldsymbol{a} \in \mathcal{A}_k} \prod_{j=1}^N (p_j^{\varphi})^{1-a_j} (q_j^{\varphi})^{a_j},$$

where

$$A_k := \left\{ a \in \{0, 1\}^N : \sum_{j=1}^N a_j = k \right\},$$

and $p_j^\varphi,\,q_j^\varphi$ as defined in class. Prove the following properties:

- (a) $P_{N,k}^{\varphi}$ is an orthogonal projector for all $0 \le k \le N$,
- (b) $P_{N,k}^{\varphi}P_{N,j}^{\varphi}=0$ for all $j\neq k,$
- (c) $\sum_{k=0}^{N} P_{N,k}^{\varphi} = 1$,
- (d) $\sum_{k=0}^{N} \frac{k}{N} P_{N,k}^{\varphi} = \frac{1}{N} \sum_{j=1}^{N} q_{j}^{\varphi}$.