Foundations of Mathematical Physics

Homework 11

Due on Nov. 30, 2023, before the tutorial.

Problem 1 [4 points]: Operator bounds

Let A, B be densely defined linear operators with $D(A) \subset D(B)$. Prove that the following two statements are equivalent:
(i) There are $a, b \geq 0$ such that

$$
\|B \varphi\| \leq a\|A \varphi\|+b\|\varphi\|
$$

for all $\varphi \in D(A)$.
(ii) There are $\tilde{a}, \tilde{b} \geq 0$ such that

$$
\|B \varphi\|^{2} \leq \tilde{a}^{2}\|A \varphi\|^{2}+\tilde{b}\|\varphi\|^{2}
$$

for all $\varphi \in D(A)$.
Prove also that the infimum over all permissible a in (i) coincides with the infimum over all permissible \tilde{a} in (ii).

Problem 2 [8 points]: Self-adjointness

Let $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be such that $V \in L^{2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$. Prove that then V is infinitesimally H_{0}-bounded, where $H_{0}=-\frac{1}{2} \Delta$ with domain $D\left(H_{0}\right)=H^{2}\left(\mathbb{R}^{3}\right)$. With Kato-Rellich, this implies that $H=H_{0}+V$ is self-adjoint on $D\left(H_{0}\right)$. Also use this result to prove that $H_{0}+\frac{\lambda}{|x|}$ is self-adjoint on $H^{2}\left(\mathbb{R}^{3}\right)$ for all $\lambda \in \mathbb{R}$. Hint: Prove that for all $a>0$ there is a $b>0$ such that for all $\varphi \in H^{2}\left(\mathbb{R}^{3}\right)$ we have $\|\varphi\|_{L^{\infty}} \leq a\|\Delta \varphi\|_{L^{2}}+b\|\varphi\|_{L^{2}}$.

Problem 3 [8 points]: Projectors

For $\varphi \in L^{2}\left(\mathbb{R}^{3}\right)$ with $\|\varphi\|=1$, we define for any $0 \leq k \leq N$ the bounded operator

$$
P_{N, k}^{\varphi}:=\sum_{a \in \mathcal{A}_{k}} \prod_{j=1}^{N}\left(p_{j}^{\varphi}\right)^{1-a_{j}}\left(q_{j}^{\varphi}\right)^{a_{j}}
$$

where

$$
\mathcal{A}_{k}:=\left\{\boldsymbol{a} \in\{0,1\}^{N}: \sum_{j=1}^{N} a_{j}=k\right\},
$$

and $p_{j}^{\varphi}, q_{j}^{\varphi}$ as defined in class. Prove the following properties:
(a) $P_{N, k}^{\varphi}$ is an orthogonal projector for all $0 \leq k \leq N$,
(b) $P_{N, k}^{\varphi} P_{N, j}^{\varphi}=0$ for all $j \neq k$,
(c) $\sum_{k=0}^{N} P_{N, k}^{\varphi}=1$,
(d) $\sum_{k=0}^{N} \frac{k}{N} P_{N, k}^{\varphi}=\frac{1}{N} \sum_{j=1}^{N} q_{j}^{\varphi}$.

