Foundations of Mathematical Physics

Homework 12

Due on Dec. 7, 2023, before the tutorial.

Problem 1 [6 points]: Fermionic reduced density matrix

Let $\Psi_{N} \in L^{2}\left(\mathbb{R}^{3 N}\right)$ be antisymmetric in x_{1}, \ldots, x_{N} (fermionic wave function), and $\left\|\Psi_{N}\right\|=1$. Prove that the one-particle reduced density matrix $\gamma_{\Psi_{N}}$ satisfies $\left\|\gamma_{\Psi_{N}}\right\|_{\mathcal{L}} \leq N^{-1}$.
Hint: You can use that

$$
\|A\|_{\mathcal{L}}=\sup _{\varphi \in L^{2},\|\varphi\|=1}\langle\varphi, A \varphi\rangle
$$

for all non-negative $A \in \mathcal{L}\left(L^{2}\right)$ (where A is called non-negative if $\langle\varphi, A \varphi\rangle \geq 0$ for all $\varphi \in L^{2}$.) Then show that $\sum_{i=1}^{N} p_{i}^{\varphi}$ is a projector on antisymmetric $L^{2}\left(\mathbb{R}^{3 N}\right)$ functions.

Problem 2 [7 points]: Energy conservation

Let $\varphi(t) \in L^{2}\left(\mathbb{R}^{3}\right)$ be solution to the Hartree equation

$$
i \frac{\mathrm{~d}}{\mathrm{~d} t} \varphi(t)=-\Delta \varphi(t)+\left(v *|\varphi(t)|^{2}\right) \varphi(t)
$$

for bounded even real-valued v. We assume a solution exists and $\varphi(t) \in H^{2}\left(\mathbb{R}^{3}\right)$. We define the energy

$$
E(\varphi(t)):=\|\nabla \varphi(t)\|^{2}+\frac{1}{2} \int\left(v *|\varphi(t)|^{2}\right)(x)|\varphi(t, x)|^{2} \mathrm{~d} x .
$$

Prove energy conservation, i.e., that $E(\varphi(t))=E(\varphi(0))$.
Problem 3 [7 points]: Term (II)
For any symmetric $\Psi_{N} \in L^{2}\left(\mathbb{R}^{3 N}\right)$ and any $\varphi \in L^{2}\left(\mathbb{R}^{3}\right)$ with $\left\|\Psi_{N}\right\|=1=\|\varphi\|$, and $v \in L^{\infty}$, prove that

$$
\left|\left\langle\Psi_{N}, p_{1}^{\varphi} p_{2}^{\varphi} v_{12} q_{1}^{\varphi} q_{2}^{\varphi} \Psi_{N}\right\rangle\right| \leq 3\|v\|_{\infty}\left(\alpha\left(\Psi_{N}, \varphi\right)+N^{-1}\right) .
$$

Hint: Symmetrize the term, i.e., write

$$
\left\langle\Psi_{N}, p_{1}^{\varphi} p_{2}^{\varphi} v_{12} q_{1}^{\varphi} q_{2}^{\varphi} \Psi_{N}\right\rangle=\frac{1}{N-1}\left\langle\Psi_{N}, \sum_{i=2}^{N} p_{1}^{\varphi} p_{i}^{\varphi} v_{1 i} q_{i}^{\varphi} q_{1}^{\varphi} \Psi_{N}\right\rangle
$$

and then use Cauchy-Schwarz in a clever way.

