# Operations Research 

Homework 6

Due on October 18, 2023

Note: Your homework must be submitted via moodle (see the link on the class website) on the due day BEFORE THE TUTORIAL, i.e., before 20:45.

## Problem 1 [10 points]

(Note: This is a variation of Exercise 6.8-8 from HL.) David, LaDeana, and Lydia are the sole partners and workers in a company which produces fine clocks. David and LaDeana each are available to work a maximum of 40 hours per week at the company, while Lydia is available to work a maximum of 20 hours per week. The company makes two different types of clocks: a grand-father clock and a wall clock. To make a clock, David (a mechanical engineer) assembles the inside mechanical parts of the clock while LaDeana (a woodworker) produces the handcarved wood casings. Lydia is responsible for taking orders and shipping the clocks. The amount of time required for each of these tasks is shown below.

|  | Time Required |  |
| :--- | :---: | :---: |
| Task | Grandfather Clock | Wall Clock |
| Assemble clock mechanism | 6 hours | 4 hours |
| Carve wood casing | 8 hours | 4 hours |
| Shipping | 3 hours | 3 hours |

Each grandfather clock built and shipped yields a profit of $\$ 300$ while each wall clock yields a profit of $\$ 200$.
(a) Formulate and solve the problem in Pyomo, and ask Pyomo to compute shadow prices (dual variables) for each activity. Please submit (a printout of) your Ipython notebook showing code and output.
(b) Occasionally, someone stops by asking for help with restoring antique clocks. How much should David charge per hour for mechanical repairs and how much should LaDeana charge per hour for wood restoration assuming that they do not wish to add more working hours and also do not wish to reduce company profit if one of them is taking on a repair job?

## Problem 2 [10 points]

(Note: This is a variation of Exercise 8.1-2 from HL.) The Childfair Company has three plants producing child push chairs that are to be shipped to four distribution centers.

Plants 1, 2, and 3 produce 12,17 , and 11 shipments per month, respectively. Each distribution center needs to receive 10 shipments per month. The distance from each plant to the respective distribution centers is given below:

|  | Distribution Center |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |  |
| Plant 1 | 800 miles | 1300 miles | 400 miles | 700 miles |  |
| Plant 2 | 1100 miles | 1400 miles | 600 miles | 1000 miles |  |
| Plant 3 | 600 miles | 1200 miles | 800 miles | 900 miles |  |

The freight cost for each shipment is $\$ 100$ plus 50 cents per mile. The objective is minimizing the total cost of transportation.
(a) Formulate and solve the problem in Pyomo.
(b) Now suppose that demand in the area served by Center 1 goes up to 15 shipments per month. Production cannot be increased on short notice, so some or all of the distribution centers will be under-supplied. Modify your Pyomo code to determine the total number of shipments to arrive at each of the centers if the objective is still to minimize the overall cost of transportation.

Submit a commented (printout of your) Ipython notebook showing code and output for each.

