Conclusion from last time:
We know how to compute all solutions to
$$A \times = b$$
, A a nide matrix, in the
specific form $\times = \times^{basic} \star \times^{hom}$, where \times^{hom} solves $A \times^{hom} = 0$, and \times^{basic} has at
least as many 0 entries as "number of columns" ninus "number of pivots".
 $=$ total number of variables in standard form
CP problem, i.e., $\times \times \times_{in} \times_{$

How does the feasible region look like?

$$A \times = b$$
 describes an affine subspace regin a plane in 3d.
The feasible region is that part of the subspace with $\times \ge 0$!
="quadrant" where all components are
nonnegative (i.e., positive or
E.g.:
 x_{e}
 $f_{easible}$ region has shape of a "simplex"

Important insight: If there is an optimal solution, we can always find one at a cornerpoint. And the cornerpoints correspond to the basic solutions of Ax=b. These we can find with bassian elimination.

A frescible region (ike in the picture could arise from
$$_{1}e_{21,1} A = (5,3,4)$$

 $x_{1} x_{2} x_{1} x_{1}$
 $x_{2} x_{1} x_{1} x_{1}$
 $x_{2} and b = 2.$
 $x_{2} composetion (1) = 2 (1)$

Proof idea:
Suppose x is optimal, but not a converpoint. Then there is always a vector v such that both x+v and x-v are still feasible. In fact, since x minimizes
$$c^{T}x$$
:
 $\cdot c^{T}x \leq c^{T}(x+v) = c^{T}v \geq 0$
 $\cdot c^{T}x \leq c^{T}(x-v) = c^{T}v \leq 0$
so x+v and x-v are also optimal!