Advanced Calculus and Methods of Mathematical Physics

Homework 1

Due on February 14, 2023, before class!

Problem 1 [4 points]

Recall the mean value theorem of integral calculus: Suppose $g:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable and non-negative, and $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Then there exists $\xi \in[a, b]$ such that

$$
f(\xi) \int_{a}^{b} g(x) \mathrm{d} x=\int_{a}^{b} f(x) g(x) \mathrm{d} x .
$$

Give an example each to show that the following assumptions cannot be generally dropped:
(a) g is non-negative,
(b) f is continuous.

Problem 2 [6 points]

Recall Taylor's theorem in the following form. Suppose $f \in C^{n+1}(I)$ for some open interval I. Then for all $c, x \in I$,

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}+R_{n, c}(x)
$$

where

$$
R_{n, c}(x)=\frac{1}{n!} \int_{c}^{x}(x-t)^{n} f^{(n+1)}(t) \mathrm{d} t
$$

(a) Turn the derivation shown in class into a formal proof by induction.
(b) Show that the remainder can also be written as

$$
R_{n, c}(x)=\frac{(x-c)^{n+1}}{n!} \int_{0}^{1}(1-s)^{n} f^{(n+1)}(c+s(x-c)) \mathrm{d} s .
$$

(c) Show that there exists $\xi \in[c, x]$ such that

$$
R_{n, c}(x)=\frac{(x-c)^{n+1}}{(n+1)!} f^{(n+1)}(\xi)
$$

(This expression is known as the Lagrange form of the remainder.)

Problem 3 [4 points]

Compute in a smart way the 4 -th order Taylor polynomials around $c=0$ of $f(x)=e^{x} \sin (2 x)$ and $g(x)=e^{\sin x}$.

Problem 4 [6 points]

In class, we discussed the following version of the Fundamental Theorem of Calculus. Let $f:[a, b] \rightarrow \mathbb{R}$ be integrable on $[a, b]$ and continuous at $\tilde{x} \in(a, b)$. Define $F:[a, b] \rightarrow \mathbb{R}$ by $F(x)-F(a):=\int_{a}^{x} f(t) \mathrm{d} t$. Then F is continuous on $[a, b]$ and differentiable at \tilde{x} with $F^{\prime}(\tilde{x})=f(\tilde{x})$. Give a rigorous proof of this theorem.

Note: Recall the definitions of continuity and differentiability and try to start from there, using the assumptions of the theorem. If you are not so familiar with proofs, take a look at the Sloughter lecture notes (linked on the website), try to understand his proof, and write it down in your own words.

