Advanced Calculus and Methods of Mathematical Physics

Homework 4

Due on March 7, 2023, before the tutorial.

Problem 1 [4 points]

Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{x y^{2}}{x^{2}+y^{2}} & \text { when }(x, y) \neq(0,0) \\ 0 & \text { when }(x, y)=(0,0)\end{cases}
$$

(a) Compute the directional derivative $\left.D_{\boldsymbol{u}} f\right|_{(0,0)}$ for every $\boldsymbol{u}=\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2}$ with $\|\boldsymbol{u}\|=1$. Is $\left.\boldsymbol{u} \mapsto D_{\boldsymbol{u}} f\right|_{(0,0)}$ linear?
(b) Show that f is continuous, but not differentiable at the origin.

Problem 2 [4 points]

Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{x^{3} y}{x^{6}+y^{2}} & \text { when }(x, y) \neq(0,0) \\ 0 & \text { when }(x, y)=(0,0)\end{cases}
$$

(a) Compute the directional derivative $\left.D_{\boldsymbol{u}} f\right|_{(0,0)}$ for every $\boldsymbol{u}=\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2}$ with $\|\boldsymbol{u}\|=1$. Is $\left.\boldsymbol{u} \mapsto D_{u} f\right|_{(0,0)}$ linear?
(b) Show that f is not continuous at the origin.

Problem 3 [4 points]

Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{4}+y^{2}} \sqrt{x^{2}+y^{2}} & \text { when }(x, y) \neq(0,0) \\ 0 & \text { when }(x, y)=(0,0)\end{cases}
$$

(a) Compute the directional derivative $\left.D_{\boldsymbol{u}} f\right|_{(0,0)}$ for every $\boldsymbol{u}=\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2}$ with $\|\boldsymbol{u}\|=1$. Is $\left.\boldsymbol{u} \mapsto D_{\boldsymbol{u}} f\right|_{(0,0)}$ linear?
(b) Show that f is continuous, but not differentiable at the origin.

Problem 4 [4 points]

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be differentiable on $\mathbb{R}^{2} \backslash\{0\}$. Let

$$
h(r, \theta)=(r \cos \theta, r \sin \theta)
$$

denote the change from polar to Cartesian coordinates and set $g=f \circ h$. Prove that, for $r>0$,

$$
\|(\nabla f) \circ h\|^{2}=\left(\frac{\partial g}{\partial r}\right)^{2}+\left(\frac{1}{r} \frac{\partial g}{\partial \theta}\right)^{2}
$$

Problem 5 [4 points]

Let $\operatorname{Mat}(n \times n)$ denote the set of real $n \times n$ matrices. We consider the squaring map

$$
S: \operatorname{Mat}(n \times n) \rightarrow \operatorname{Mat}(n \times n), S(A) \mapsto A^{2} .
$$

In analogy to what we have defined in class, the map S is differentiable at A if there exists a linear map $\left.D S\right|_{A}$ such that

$$
S(A+H)=S(A)+\left.D S\right|_{A} H+r_{A}(H), \text { with } \lim _{H \rightarrow 0} \frac{\left\|r_{A}(H)\right\|}{\|H\|}=0 .
$$

Here, $\|H\|$ denotes the operator norm of H. Show that A is differentiable everywhere and compute its derivative $\left.D S\right|_{A}$.

