Advanced Calculus and Methods of Mathematical Physics

Homework 7

Due on March 28, 2023, before the tutorial.

Problem 1 [4 points]

(Kantorovitz, p. 175, Exercise 1.) Let $F(y)=\int_{0}^{1} e^{x^{2} y} \mathrm{~d} x$.
(a) Find $F^{\prime}(0)$.
(b) For $y \neq 0$, show that F satisfies the differential equation

$$
2 y F^{\prime}(y)+F(y)=e^{y} .
$$

Problem 2 [5 points]

(Kantorovitz, p. 175, Exercise 1.) Let $b>0$. For $f \in C([0, b])$, define $F_{0}(x)=f(x)$ and

$$
F_{n}(x)=\frac{1}{(n-1)!} \int_{0}^{x}(x-y)^{n-1} f(y) \mathrm{d} y
$$

for $x \in[0, b]$ and $n=1,2, \ldots$ Show that $F_{n} \in C^{n}([0, b])$ with

$$
F_{n}^{(k)}=F_{n-k} \quad \text { for } k=1, \ldots, n
$$

Remark: This relation shows that if J denotes the integration operator on $C([0, b])$ defined by

$$
(J f)(x)=\int_{0}^{x} f(y) \mathrm{d} y
$$

then

$$
F_{n}=J^{n} f
$$

Problem 3 [5 points]

(Kantorovitz, p. 177, Exercise 5) Let $0<a<b$ and

$$
F(y)=\int_{a+y}^{b+y} \frac{e^{x y}}{x} \mathrm{~d} x
$$

Calculate $F^{\prime}(y)$ for $y>0$.

Problem 4 [6 points]

(Adapted from Kantorovitz, Example 4.1.12) Consider the function

$$
f(x, y)=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

on the rectangle $I=[0,1] \times[\alpha, 1]$ for $\alpha \in(0,1)$.
(a) Show that

$$
\int_{0}^{1} f(x, y) \mathrm{d} x=-\frac{1}{1+y^{2}}
$$

for every fixed $y \in[\alpha, 1]$.
Hint: Note that

$$
\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{1}{x^{2}+y^{2}}+y \frac{\partial}{\partial y} \frac{1}{x^{2}+y^{2}} .
$$

(b) Note that the result from (a) continuously extends to the unit square $I=[0,1]^{2}$ and conclude that

$$
\int_{0}^{1} \int_{0}^{1} f(x, y) \mathrm{d} x \mathrm{~d} y=-\frac{\pi}{4}
$$

while

$$
\int_{0}^{1} \int_{0}^{1} f(x, y) \mathrm{d} y \mathrm{~d} x=\frac{\pi}{4}
$$

