Advanced Calculus and Methods of Mathematical Physics

Homework 8

Due on April 11, 2023, before the tutorial.

Problem 1 [3 points]

(Kantorovitz, p. 177, Exercise 7) For $n \in \mathbb{N}$, calculate the iterated integral

$$
\int_{0}^{\pi} \int_{0}^{1} x^{2 n-1} \cos \left(x^{n} y\right) \mathrm{d} x \mathrm{~d} y
$$

Problem 2 [3 points]

Let $B \subset \mathbb{R}^{n}$ be a bounded set and define the characteristic function of B by

$$
\chi_{B}(x)= \begin{cases}1 & \text { if } x \in B \\ 0 & \text { if } x \notin B\end{cases}
$$

Show that χ_{B} is Riemann-integrable if and only if B has content.
Problem 3 [6 points]
(Kantorovitz, p. 177, Exercise 8)
(a) Calculate the iterated integral

$$
\int_{0}^{1} \int_{0}^{1} \frac{x}{\left(1+x^{2}\right)(1+x y)} \mathrm{d} x \mathrm{~d} y
$$

in two different ways, and prove thereby that

$$
\int_{0}^{1} \frac{\ln (1+x)}{1+x^{2}} \mathrm{~d} x=\frac{\pi \ln 2}{8}
$$

(b) Conclude that

$$
\int_{0}^{1} \frac{\arctan x}{1+x} \mathrm{~d} x=\frac{\pi \ln 2}{8}
$$

Problem 4 [4 points]
Let $D \subset \mathbb{R}^{2}$ be the domain bounded by the parabola $x=y^{2}$ and the line $x=y$. Compute

$$
\int_{D} \sin \frac{\pi x}{y} \mathrm{~d} S
$$

Problem 5 [4 points]

Let $D \subset \mathbb{R}^{2}$ be the annulus with radii $0<a<b$, i.e., $D:=\left\{(x, y) \in \mathbb{R}^{2}: a \leq \sqrt{x^{2}+y^{2}} \leq b\right\}$. Compute

$$
\int_{D} \arctan \frac{y}{x} \mathrm{~d} S
$$

