Advanced Calculus and Methods of Mathematical Physics

Homework 9

Due on April 18, 2023, before the tutorial.

Problem 1 [3 points]

Let $R>0$.
(a) Let $F \in C^{1}\left(\left[0, R^{2}\right]\right)$ and set $f=F^{\prime}$. Show that

$$
\int_{B(0, R)} f\left(x^{2}+y^{2}\right) \mathrm{d} S=\pi\left(F\left(R^{2}\right)-F(0)\right)
$$

(b) Calculate $\int_{B(0, R)} \cos \left(x^{2}+y^{2}\right) \mathrm{d} S$.
(c) Calculate $\int_{B(0, R)} \exp \left(-x^{2}-y^{2}\right) \mathrm{d} S$.

Problem 2 [3 points]

Let

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: 1 \leq x^{2}-y^{2} \leq 9,0 \leq x \leq 4, y \geq 0\right\}
$$

Compute

$$
\int_{D} x y e^{x^{2}-y^{2}} \mathrm{~d} S
$$

Problem 3 [4 points]

(a) Use the spherical coordinates from Problem 2 Homework 5 to compute the volume of the unit sphere.
(b) Let $0<a<b$ and

$$
D=\left\{x \in \mathbb{R}^{3}: x_{i} \geq 0, a \leq\|x\| \leq b\right\}
$$

For $p, q \in \mathbb{R}$ with $q \geq 0$, compute

$$
A_{i}=\int_{D} x_{i}^{q}\|x\|^{p} \mathrm{~d} x
$$

Problem 4 [3 points]

Calculate the volume of the domain in \mathbb{R}^{3} bounded by the surfaces $z=x^{2}+y^{2}, y=x^{2}$, $y=1$, and $z=0$.

Problem 5 [3 points]

Recall the definition for a line integral of a vector field $F \in C\left(D, \mathbb{R}^{n}\right)$ on a domain $D \subset \mathbb{R}^{n}$ along a smooth curve $\gamma \in C^{1}([a, b], D)$,

$$
\int_{\gamma} F \cdot \mathrm{~d} x=\int_{a}^{b} F(\gamma(t)) \cdot \gamma^{\prime}(t) \mathrm{d} t
$$

Prove, by explicit calculation, that this definition is independent of the choice of parametrization of the curve.

Problem 6 [4 points]

(Kantorovitz, Exercises 4.3.15, Problem 1.) Let γ be the helix parameterized by

$$
\gamma(t)=(a \cos t, a \sin t, b t)
$$

with $a, b>0$.
(a) Find the arc length $s(t)$ of the arc $\{\gamma(\tau): 0 \leq \tau \leq t\}$.
(b) Find the length of one turn of the helix.
(c) Let $F=(-y, x, z)$ be a vector field in \mathbb{R}^{3}. Calculate the line integral

$$
\int_{\gamma} F \cdot \mathrm{~d} x
$$

over the turn of the helix $t \in[0,2 \pi]$.
(d) Calculate the line integral

$$
\int_{\gamma} \frac{1}{\|x\|} \mathrm{d} s
$$

over the same turn of the helix.

Bonus Problem [4 points]

Let us consider the von-Koch curve ("snowflake"). It is constructed iteratively in the following way:

1. Start with an equilateral triangle with sides of unit length.
2. On the middle third of each of the three sides, build an equilateral triangle with sides of length $1 / 3$. Erase the base of each of the three new triangles.
3. On the middle third of each of the twelve sides, build an equilateral triangle with sides of length $1 / 9$. Erase the base of each of the twelve new triangles.

The boundary after the n-th step is a piecewise linear curve γ_{n}; parametrize it as a map $\gamma_{n}:[0,1] \rightarrow \mathbb{R}^{2}$ so that $\left\|\gamma_{n}^{\prime}\right\|$ is constant.
(a) How many pieces does each γ_{n} have and what is their total length?
(b) Show that the sequence of maps γ_{n} converges uniformly to a continuous map $\gamma:[0,1] \rightarrow$ \mathbb{R}^{2}.
(c) Show that γ is not rectifiable.

