Advanced Calculus and Methods of Mathematical Physics

Homework 10

Due on April 25, 2023, before the tutorial.

Problem 1 [8 points]

(a) Compute the volume of the ice cream cone defined by $0 \leq \varphi \leq 2 \pi, 0 \leq \theta \leq \frac{\pi}{4}, 0 \leq r \leq \sqrt{2}$ (in the notation of Problem 2 from Homework 5).
(b) Compute $\int_{B} e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d S$, where B is the unit ball.
(c) The function

$$
g:[0, \infty) \times[0,2 \pi) \times \mathbb{R} \rightarrow \mathbb{R}^{3},(r, \phi, z) \mapsto(r \cos \varphi, r \sin \varphi, z)
$$

describes the change from cylindrical coordinates in \mathbb{R}^{3} to Cartesian coordinates. Let $f:[a, b] \rightarrow \mathbb{R}, y=f(z)$ be continuous and positive except possibly at the endpoints. Denote by $\bar{D} \subset \mathbb{R}^{3}$ the closed domain obtained from rotating the graph of f about the z-axis. Use cylindrical coordinates to compute the volume of \bar{D}.

Problem 2 [5 points]

(Kantorovitz, Exercises 4.3.15, Problem 3.) The curve $\gamma \subset \mathbb{R}^{2}$ is given in polar coordinates by the C^{1} function

$$
r=g(\theta), \quad \theta \in[a, b] .
$$

(a) Show that the arc length function on γ is given by

$$
s(\theta)=\int_{a}^{\theta} \sqrt{g^{\prime}(\tau)^{2}+g(\tau)^{2}} \mathrm{~d} \tau .
$$

(b) For $g(\theta)=1-\cos \theta,[a, b]=[0,2 \pi]$, find the length of the curve γ.

Problem 3 [5 points]

(Kantorovitz, Exercises 4.3.15, Problem 4.) Let γ be the circle centered at the origin with radius r. Calculate

$$
\int_{\gamma} F \cdot \mathrm{~d} x
$$

for
(a) $F(x)=\left(x_{1}-x_{2}, x_{1}+x_{2}\right)$,
(b) $F(x)=\nabla \phi$ with $\phi(x)=\arctan \left(x_{2} / x_{1}\right)$.

Explain the difference between case (a) and case (b) in light of the theory discussed in class.
Problem 4 [2 points]
Let γ be the ellipse with equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

with counter-clockwise orientation. Let

$$
F(x, y)=e^{x}(\sin y, \cos y) .
$$

Calculate

$$
\int_{\gamma} F \cdot \mathrm{~d} x
$$

