Advanced Calculus and Methods of Mothematical Physics
Traf. Sören Petrat, Constructor University, Spring 2023
Teb.21,2023
1.4 Metric and Monned Spaces
(et us take an abstract point of view for a nonneut.
Given some set X, there are different possibilities to define "closences" for elements of X:
The meat generallabilities type of space is a topological space
$$(X, T)$$
, where T is a
callection of subsets of X satisfying the axioms:
 $\mathcal{P} \in T$, $X \in T_1$
• arbitrary unions of elements of T belong to T,
• finite infersections of elements of T belong to T.
Elements of T are called "open sets". Complements of open sets are called "closed sets".
For example, in TR", arbitrary unions of open balls $B_X(X) := \{Y \in TR": ||X-Y|| \le Y\}$ can be
the open sets T.
This allows us to define, e.g.:

We continue our discussion of structures that define "closeness" of two elements in a set:

• Metric spaces (M, d) have a distance function
$$d: M \times M \rightarrow [0, \infty)$$
 called a metric.
A fel. d: $M \times M \rightarrow [0,\infty)$ is called a metric if:
 $-d(x,y) = 0$ (=> $x = y$ (definiteness),
 $-d(x,y) = d(y,x) \forall x_{iy} \in M$ (symmetry),
 $-d(x,y) = d(x,z) + d(z,y) \forall x_{iy} \in M$ (triangle inequality).
(et us define the open ball around x with radius x as $B_{x}(x) := \{y \in M: d(x_{iy}) < r\}$.
Then arbitrary unions of open balls can be def. as the open sets of a topological space
(they induce the "metric topology").
(Every metric space defines a topological space, but not every topological space is induced by a metric.
• More convertely: Any vector space V over TR (or C or any other field) together with
a norm $||\cdot||: V \rightarrow [0, \infty), x \mapsto ||x||$ is called normed space. A norm is def. by:
 $- ||x|| = 0$ (=> $x = 0$ (definiteness),
 $- ||x|| = |X| ||x|| \forall X \in \mathbb{R} (or C) (x \in V (homeogeneity)),
 $- ||x+y|| \le ||x|| + ||y|| \forall x_{i}y \in V (triangle inequality).$$

Any norm défines a métric via d(x,y) = 11x-yll. (But not every métric comes from a norm.)

Even more special are inner product spaces. A map
$$(.,.): \forall x \lor \rightarrow \mathbb{C}$$
, $[x_i \lor] \mapsto (x_i \lor)$
is called inner product if:
 $(x_i \land \forall \lor \land \lor) = \land (x_i \lor) + (\land (x_i \land \lor) = \land (x_i \lor) + (\land (x_i \land \lor) = \lor) + (\land (x_i \lor) + (\land (x_i \lor) = \lor) + (\land (x_i \lor) + (\land (x_i \lor) = \lor) + (\land (x_i \lor) + (\land (x_i \lor) = \lor) + (\land (x_i \lor) = \lor (x_i \lor) + (\land (x_i \lor) = \lor (x_i \lor) + (\land (x_i \lor) = \lor (x_i \lor) + (\land (x_i \lor) = \lor (x_i \lor) + (\land (x_i \lor) = \lor (x_i \lor) + (\land (x_i \lor) = \lor (x_i \lor) + (\land (x_i \lor) = \lor (x_i \lor) + (\land (x_i \lor) = \lor (x_i \lor) + (\land (x_i \lor) = \lor (x_i \lor) + (\land (x_i \lor) = \lor (x_i \lor) + (\land (x_i \lor) = \lor (x_i \lor) + (\land (x_i \lor) = \lor (x_i \lor) + (\land (x_i \lor) = \lor (x_i \lor) + (\land (x_i \lor) = \lor (x_i \lor) + (x_i \lor$

Conceptually:

- · topologies défine "closeness",
- · metrics define "distance",
- · norms define "length",
- · inner products define "angles".