Advanced Calculus and Methods of Mathematical Physics

We continue exploring differentiability in \mathbb{R}^{n}.

Definition: Let $U \subset \mathbb{R}^{n}$ be open and $f: U \rightarrow \mathbb{R}^{m}$. Then f is called differentiable at $\tilde{x} \in U$ if these is a linear map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ s.t.

$$
f(\tilde{x}+h)=f(\tilde{x})+A h+r_{\tilde{x}}(h) \text { with } \lim _{h \rightarrow 0} \frac{\left\|\mid r_{\tilde{x}}(h)\right\|}{\|h\|}=0 \text {. }
$$

In other words: $\lim _{h \rightarrow 0} \frac{\|f(\tilde{x}+h)-f(\hat{x})-A h\|}{\|h\|}=0$.
We call $\left.A \equiv D f\right|_{\tilde{x}} \equiv f^{\prime}(\tilde{x})$ the total derivative of f at \tilde{x}. If f is differentiable for all $\tilde{x} \in U_{1}$ we say f is differentiable in U.

Note: Clearly differentiability at $\tilde{x} \in U$ implies continuity at \tilde{x} since $\frac{\| r_{g}(4\| \|}{\|4\|} \rightarrow 0$ implies

$$
\left\|r_{x} \mid h\right\| \rightarrow 0 .
$$

lemma: If $f: U \rightarrow \mathbb{R}^{n}\left(U \subset \mathbb{R}^{n}\right.$ open $)$ is differentiable at $\tilde{x} \in U$, then the derivative $\left.D f\right|_{\tilde{x}}$ is unique.

Proof:- Suppose both A_{1} and A_{2} are derivatives. Then $B: A_{1}-A_{2}$ satisfies

$$
\begin{aligned}
\frac{\|B U\|}{\|h\|} & =\frac{1}{\|h\|}\left\|f(\tilde{x}+h)-f(\tilde{x})-r_{1, \hat{x}}(h)-\left(f(\tilde{x}+h)-f(\tilde{x})-r_{2, \tilde{x}}(h)\right)\right\| \\
& \leq \frac{\| r_{10 x}(h\| \|}{\|h\|}+\frac{\left\|r_{2, x}(h)\right\|}{\|h\|} \xrightarrow{h \rightarrow 0} 0 .
\end{aligned}
$$

Now fix any $u \in \mathbb{R}^{n}, u \neq 0$ and choose $k=t u, t \in \mathbb{R}$. Then:

$$
\begin{gathered}
0 \stackrel{t \rightarrow 0}{\rightleftarrows} \frac{\left\|\left(A_{2}-A_{1}\right) u\right\|}{\|u\|}=\frac{\left\|\left(A_{1}-A_{2}\right) t u\right\|}{\|t u\|}=\frac{\left\|\left(A_{1}-A_{2}\right) u\right\|}{\|u\|} \text {, i.e., } A_{1} u=A_{2} u \forall u \in \mathbb{R}^{n} \\
\Rightarrow A_{1}=A_{2} .
\end{gathered}
$$

Ex:: $f\left(x_{1}, x_{2}\right)=\binom{x_{1}^{2}+x_{1} x_{2}}{2 x_{1}-x_{2}^{2}}$

Next we consider derivatives in different directions:
Definition: $f: U \rightarrow \mathbb{R}^{m}\left(U \subset \mathbb{R}^{n}\right.$ open) is differentiable at $\tilde{x} \in U$ in the direction $u \in \mathbb{R}^{n}$, $\|u\|=1$, if $\lim _{t \rightarrow 0} \frac{f(\tilde{x}+t u)-f(\tilde{x})}{t}$ exists. Then this limit is denoted by $\left.D_{u} f\right|_{\tilde{x}}$ and called directional derivative (or derivative in direction a)

If f is differentiable in the direction e_{j}, we call $\left.D_{e_{j}} f\right|_{\tilde{x}}=\frac{\partial f}{\partial x_{j}}(\tilde{x})$ the j-th partial derivative of f at \tilde{x}.

In other words: $\frac{\partial f_{k}}{\partial x_{j}}(\tilde{x})=\lim _{t \rightarrow 0} \frac{f_{k}\left(\tilde{x}_{1}, \ldots, \tilde{x}_{j-1}, \tilde{x}_{j}+t_{1}, \tilde{x}_{j+1}, \ldots, \tilde{x}_{n}\right)-f_{k}(\tilde{x})}{t}$.
the 1-dimensional derivative of f_{u} in the variable x_{j} out (keeping all other variables fixed)
Ex:: $f\left(x_{1}, x_{2}\right)=\binom{x_{1}^{2}+x_{1} x_{2}}{2 x_{1}-x_{2}^{2}} \Rightarrow \frac{\partial f}{\partial x_{1}}=\binom{2 x_{1}+x_{2}}{2}, \frac{\partial f}{\partial x_{2}}=\binom{x_{1}}{-2 x_{2}}$

Note that in the example we have $\left.D f\right|_{x}=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}\right)$.

The first resit is:
Theorem: If $f: U \rightarrow \mathbb{R}^{n}\left(U \subset \mathbb{R}^{n}\right.$ open) is differentiable at $\tilde{x} \in U_{1}$ then all directional derivatives at \tilde{x} exist. In this case, the derivative in direction $u \in \mathbb{R}^{n}, \| u l l=1$, is given by $\left.D_{u} f\right|_{\tilde{x}}=\underbrace{\left.D f\right|_{\tilde{x}} \underbrace{u}_{\in \mathbb{R}^{n}} \text {. }}_{\text {mxunatixx }}$
In particular, $\frac{\partial f_{i}(\hat{x})}{\partial x_{j}}=\left(D f f_{\tilde{x}}\right)_{i j}$. \& $D f=\left(\begin{array}{ccc}\frac{\partial x_{1}}{} & & \vdots \\ \vdots & & \dot{p}_{m} \\ \frac{\partial f_{m}}{\partial x_{1}} & \ldots & \frac{\partial x_{n}}{\partial x_{n}}\end{array}\right)$ "Jacobian matrix"
$\underbrace{x_{j}}_{\text {derivative of the }}=\underbrace{D 1}_{\text {(iii) matrix entry of }}$
i-th component off
the total derivative,
w.r.t. x_{j}
= the matrix of this
linear map in the basis (eg)
Proof: f differentiable at \tilde{x} means $\lim _{h \rightarrow 0} \frac{\|f(x+h)-f(x)-D f \cdot h\|}{\|h\|}=0$.
In particular, for $u \in \mathbb{R}^{n},\|u\|=1$, we can choose $h=t u$ and get

$$
\begin{aligned}
& 0=\lim _{t \rightarrow 0} \frac{\|f(\tilde{x}+t u)-f(\bar{x})-D f \cdot u t\|}{t}=\lim _{t \rightarrow 0}\left\|\frac{f(\tilde{x}+t u)-f(x)}{t}-D f \cdot u\right\| \text {, ie., } \\
& \lim _{t \rightarrow 0} \frac{f(\tilde{x}+t u)-f(\tilde{x})}{t}=D f \cdot u . t
\end{aligned}
$$

But: There are examples of factious where all partial derivatives exist, but that are not differentiable (total derivative does not exist). See Homework.

