Advanced Calculus and Methods of Mathematical Physics

Last time, we introduced the Hessian H_{f} of a function $f: u \rightarrow \mathbb{R}\left(u \subset \mathbb{R}^{n}\right.$ open) as

$$
\left(H_{f}\right)_{i j}:=\frac{\partial^{2} f}{\partial x_{i} x_{j}} \text {. For } f \in C^{2} \text {, we found }\left(H_{f}\right)_{i j}=\left(H_{f}\right)_{j j}(C \text { lairaut, schwar } z) \text {. }
$$

Similar to functions in \mathbb{R}, we can do a Taylor expansion. Let us write it down hare ne to second order (and for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ only).

Theorem (Taylor, aud order): let $f: U \rightarrow \mathbb{R}, U \subset \mathbb{R}^{n}$ open, $f \in C^{2}(u)$. Let $x \in U$ and $h \in \mathbb{R}^{n}$ such that $x+t h \in U \quad \forall t \in[0,1]$. Then

$$
\begin{aligned}
f(x+h)=f(x)+D f l_{x} h+\frac{1}{2} \underbrace{c h}_{=h^{\top} H_{f}(x) \cdot h} H_{f}(x) h s
\end{aligned}+r_{x}(h) \text {, with } \frac{\left\|r_{x}(h)\right\|}{\|h\|^{2}} \xrightarrow{h \rightarrow 0} 0 .
$$

Proof: Follows from apphing 1-d Taylor to $g(t):=f(p+t h)$.
The Hessian can be used to determine whether an extremm is a maximum or minimum:
Theorem: Let $f: U \rightarrow \mathbb{R}, u \subset \mathbb{R}^{n}$ open, $f \in C^{2}(u)$, with $(\nabla f)(x)=0$ for some $x \in U$.
Then:

- If $H_{f}(x)$ is positive definite (i,e., $\left\langle h, H_{f}(x) h \gg 0 \forall h \in \mathbb{R}^{n}, h \neq 0\right)$, then f has a local minimum at x.
- If $H_{f}(x)$ is negative definite (ie., $\left\langle h, H_{f}(x) h>0 \forall h \in \mathbb{R}^{n}, h \neq 0\right.$), then f has a local maximum at x.

Proof: Follows from the Taylor expansion (making h very small).
Note: Since H is symmetric, all eigenvalues are real. Then H is positive definite if and out if all eigenvalues are positive.

A very simple example: $f(x, y)=-x^{2}-y^{2}$.

$$
\nabla f=\binom{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}=\binom{-2 x}{-2 y} . \quad \nabla f=0 \quad \text { for } \quad(x, y)=(0,0) .
$$

$H_{f}((x, y)=(0,0))=\left(\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right)$, so $H_{f}(0)$ is negative definite.
$\Rightarrow f$ has a maximum at $(0,0)$.
Other examples (see grogebra pictures below):

$$
\text { - } \begin{aligned}
f(x, y)=x^{2}-y^{2}+2 \Longrightarrow H_{f}(0,0)=\left(\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right) \Rightarrow & \text { saddle point } \\
& \left(c h, H_{f} h \gg 0 \text { for some } h,\right. \text { and } \\
& \left(h_{1} H_{f} h \gg 0 \text { for others }\right)
\end{aligned}
$$

$$
\begin{aligned}
& \cdot f(x, y)=x^{3}-y^{2}+2 \Rightarrow H_{f}(0,0)=\left(\begin{array}{cc}
0 & 0 \\
0 & -2
\end{array}\right) \Rightarrow \Rightarrow \text { degenerate point } \\
&\left(c h, H_{f} h>=0 \text { for some } h \in \mathbb{R}^{n}\right) \\
& \cdot f(x, y)=y^{3}-3 x^{2} y+2 \Rightarrow H_{f}(0,0)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \Longrightarrow \text { degenerate point }
\end{aligned}
$$

("monkey saddle", see pictures)
2.3 The Inverse and Implicit Function Theorems

Question: Under which conditions is $f: U \rightarrow \mathbb{R}^{n} \quad\left(U \subset \mathbb{R}^{n}\right.$ open) invertible?
Here f goes from a soses of \mathbb{R}^{n} into a subset of \mathbb{R}^{n}.
And: If f is invertible and differentiable, is then $\underbrace{f^{-1}}_{\text {the inverse of } f}$ also differentiable?

Reminder:

- $f: X \rightarrow Y$ is called injective (or "one-to-oue") if $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies $x_{1}=x_{2}$. (ln other words: Given $Y \in Y$, then $f(x)=y$ for at most one $x \in X$.)

Ex: $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{x}$ is injective, but $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{2}$ is not.

- $f: X \rightarrow Y$ is called surjective (or "onto") if $\forall y \in Y$ there is an $x \in X$ s.t. $f(x)=Y$.

Ex: $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{x}$ is not subjective, but $f: \mathbb{R} \rightarrow(0, \infty), x \mapsto e^{x}$ is.

- $f: X \rightarrow Y$ is called bijective if it is injective and sorjective.

If $f: X \rightarrow Y$ is bijective, then it has an inverse $f^{-1}: Y \rightarrow X$.

$$
\text { (i.e. } f\left(f^{-1}(y)\right)=y \quad \forall y \in Y \text {, or } f^{-1}(f(x))=x \quad \forall x \in X \text {.) }
$$

From Analysis and Calculus we know the case $n=1$:
If f is continuously differentiable and $f^{\prime}(p) \neq 0$, then f is invertible in a neighborhood of p, f^{-1} is continuously differentiable, and $\underbrace{\substack{ \\f^{-1}}}_{\text {If } f(p)=q \text {, then }\left(f^{-1}\right)^{\prime}(q)=\frac{1}{\left.f^{-1}\right)^{\prime}(f(p))=\frac{1}{\left.f^{\prime}(p)(p)\right)}} \text {. }}$

For $n>1$: Use linear approximation of $f i$ then f should be invertible (in small neighborhood) if $D f$ is invertible.

Precise Statement: next time.

The following pictures were generated with https://www.geogebra.org/3d.

$$
f(x, y)=x^{2}-y^{2}+2
$$

$$
f(x, y)=x^{3}-y^{2}+2
$$

$f(x, y)=y^{3}-3 x^{2} y+2$
("Monkey Saddle")

