Advanced Calculus and Mathods of Mothematical Physics
Prof. Soven Patrat, Constructor University, Sping 2023
(ast fine, we introduced the Hessian
$$H_{\xi}$$
 of a function $f: M \rightarrow TR$ ($M < TR^{n}$ open) as
(H_{ξ}) $_{ij} := \frac{2^{3}\xi}{28 \times 200}$. For $f \in C^{2}$, we found (H_{ξ}) $_{ij} = (H_{\xi})_{ji}$ (($laimat$, Schwarz)).
Similar to functions in TR, we can do a Taylor expansion. Let us write it down have up
to second order (and for $f: TR^{n} \rightarrow TR$ only).
Theorem ($Taylor$, $2ud$ order): let $f: U \rightarrow TR$ ($U < TR^{n}$ open, $f \in C^{2}(H)$. ($d \neq x \in M$ and $h \in \mathbb{R}^{n}$
such that $x + the U$ $\forall t \in [0,1]$. Then
 $f(x,th) = f(x) + Df(x)h + \frac{4}{3} ch, H_{\xi}(x)h^{3} + T_{x}(h)$, with $\frac{IIr_{x}(h)I}{IIhII^{2}}$ $\frac{h+0}{0}$.
 $= h^{T}H_{\xi}(h)h$
The Herium can be used to determine uhether as extremum is a maximum or minimum:
Theorem: (eff f: $H \rightarrow TR$, $M < TR^{n}$ open, $f \in C^{2}(H)$, with ($Tf(h) = 0$ for some $x \in U$.
Then:
 $\cdot If H_{\xi}(x)$ is positive definite (i.e., $ch, H_{\xi}(h)h^{3} > 0 \forall h \in TR^{n}, h \neq 0$), then f
has a local minimum of x .
 $\cdot If H_{\xi}(x)$ is negative definite ($I.e., ch, H_{\xi}(h)h^{3} < 0 \forall h \in TR^{n}, h \neq 0$), then f
has a local minimum of x .

A very simple example:
$$f(x_{iY}) = -x^2 - y^2$$
.

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} = \begin{pmatrix} -2x \\ -2y \end{pmatrix}, \quad \nabla f = 0 \quad \text{for} \quad (x_{iY}) = (0,0).$$

$$H_f((x_{iY}) = (0,0)) = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}, \quad \text{so} \quad H_f(0) \text{ is negative definite}.$$

$$=> f \text{ has a maximum at } (0,0).$$

Other examples (see geodebra pictures below):
•
$$f(x,y) = x^2 - y^2 + d = > H_{1}(0,0) = \begin{pmatrix} a & 0 \\ 0 & -d \end{pmatrix} =>$$
 Saddle point
($ch,H_{1}h > 0$ for some h , and
 $ch,H_{2}h > c0$ for others)

•
$$f(x,y) = x^3 - y^2 + 2 = y + f(0,0) = \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix} = y$$
 degenerate point
($ch, H_{f}h > = 0$ for some hell?"

$$\cdot f(x,y) = y^3 - 3x^2y + \lambda = > H_{\xi}(0,0) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = > degenerate point$$

$$("nonkey soldle", see pictures]$$

2.3 The Inverse and Implicit Function Theorems

Question: Under which conditions is f: U -> TR" (UCTR" open) invertible?

Reminder:
f: X→Y is called injective (or "one-to-one") if f(x_1) = f(x_2) implies x_1=x_2. (In other words: Given y ∈ Y, then f(x)=y for at most one x ∈ X.)
Ex.: f: R→R, x → e[×] is injective, but f: R→R, x → x² is not.
f: X→Y is called surjective (or "onto") if Yy∈Y there is an x ∈ X s.t. f(x)=y.
Ex.: f: R→R, x → e[×] is not surjective, but f: R→ (0, ∞), x → e[×] is.
f: X→Y is called bjective if it is injective and surjective.

$$\{f \in X \rightarrow Y \text{ is bijective, then it has an inverse } f^{-1}: Y \rightarrow X \\ (i.e., f(f^{-1}(y)) = Y \forall Y \in Y, \text{ or } f^{-1}(f(x)) = X \forall X \in X.)$$

From Analysis and Calculus we know the case
$$n=1$$
:
If f is continuously differentiable and $f'(p) \neq 0$, then f is invertible in a
neighborhood of p, f^{-1} is continuously differentiable, and $(f^{-1})'(f(p)) = \frac{1}{f'(p)}$.
If $f(p)=q$, then $(f^{-1})'(q) = \frac{1}{f'(f^{-1}(q))}$

For N>1: Use linear approximation of f; then f should be invertible (in small neighborhood) if Df is invertible.

Precise statement: next time.

The following pictures were generated with <u>https://www.geogebra.org/3d</u>.

 $f(x, y) = x^{3} - y^{2} + 2$

$$f(x, y) = y^{3} - 3x^{2}y + 2$$

("Monkey Saddle")

