Advanced Calculus and Methods of Mathematical Physics

Today, we discuss the Inverse and Implicit Function Theorems.
Theorem (Inverse Function Theorem):
let $U \subset \mathbb{R}^{n}$ be open, $f: U \rightarrow \mathbb{R}^{n}$ be $C^{\wedge}(U)$, and let $\left.D f\right|_{p}$ be invertible for some $p \in U$.
Then:
a) There are open neighborhoods V of y and W of $q:=f(p)$ s.t. $\left.f\right|_{V}: V \rightarrow W$ is bijective (ie., $f l_{v}$ has an inverse).
b) The inverse $\left(\left.f\right|_{v}\right)^{-1}$ is $C^{1}(W)$.

Note:

- If l_{p} invertible $\Leftrightarrow T$ he Jacobian matrix $J_{i j}(p)=\frac{\partial f_{i}(p)}{\partial x_{j}}$ is invertible.
- Using the chain rule we find: $1=\underbrace{\left.D\left(f^{-1} \circ f\right)\right|_{p}}=\left.\left.D f^{-1}\right|_{f(p)} D f\right|_{p}$

$$
\left.\Rightarrow D f^{-1}\right|_{f(p)}=\left(\left.D f\right|_{p}\right)^{-1} \quad \begin{aligned}
& \text { identity } \\
& \text { ouT R }
\end{aligned} \quad f^{\text {derivative of }}(f(x))=x
$$

- The inverse fact. Hem. implies: The system of equations $f_{i}\left(x_{n}, \ldots, x_{n}\right)=Y_{i} \quad i=1, \ldots, n$ can be solved for $x_{n} \ldots, x_{n}$ in terms of $y_{n} \ldots, y_{n}$, if x and y are in small enough neighborhoods of p and q.
- If $f: V \rightarrow W$ is C^{k}, and f^{-1} exists and is C^{k} then f is called a C^{k} diffeomorphism. If any $p \in V$ has a neighborhood \tilde{V} s.t. $\left.f\right|_{\tilde{v}}: \tilde{V} \rightarrow f(\tilde{v})$ is a diffeomorphism, then f is called a local diffeomorphism. Note: A frt. that is a local differ. is not neressanly a global differ, see HW.

Closely related to the Inverse Function Theorem is the following question:
let $f: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}$. Under which conditions can we solve $f(x, y)=0$ for $x \in \mathbb{R}^{n}$ in terms of $\varphi \in \mathbb{R}^{n}$?
In other words: In the system of equations $f_{1}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)=0$

$$
f_{n}\left(x_{1}, \ldots, x_{n}, y_{n}, \ldots, y_{n}\right)=0,
$$

can we solve for $\left.x_{n} \mid y_{n} \ldots, y_{m}\right), \ldots, X_{n}\left(y_{n} \ldots, y_{n} \mid\right.$, at least locally?
Ex:: $f(x, y)=x^{2}+y^{2}-1 \quad \mid x, y \in \mathbb{R}$.

$\Rightarrow f(x, y)=0$ has two local solutions $\left.x_{ \pm} \mid y\right)= \pm \sqrt{1-y^{2}}$.
More precisely: Solution possible in an open neighborhood except when $x=0 \quad(y= \pm 1)$.
At $x=0$, we have $\left.\frac{\partial f}{\partial x}\right|_{x=0}=\left.2 x\right|_{x=0}=0$, ie. $\left.\frac{\partial f}{\partial x}\right|_{x=0}$ not invertible.
\Rightarrow It seems we require $\frac{\partial s}{\partial x}$ to be invertible
This is generalized in the following theorem:
Theoran (Implicit Function Theorem):
Let $U \subset \mathbb{R}^{n+n}$ be open, $f: U \rightarrow \mathbb{R}^{U}$ be $C^{1}(U)$, and $f(p, q)=0$ for sone $(p, q) \in U$.
We assure that $\frac{\partial f}{\partial x}\left(p_{p q}\right)=\left.\left(\begin{array}{cccc}\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}\end{array}\right)\right|_{(p q q)}$ is invertible.
Then there are open sets $V \subset \mathbb{R}^{n+n}$ and $W \subset \mathbb{R}^{m}$ with $(p, q) \in V, q \in W$ s.t. to ever $Y \in W$ corresponds a mine x st. $(x, y) \in V$ and $f(x, y)=0$. If this $x:=g(y)$, then $g: W \rightarrow \mathbb{R}^{4}$ is $c^{1}, g(q)=p, f(g(y), y)=0$, and $\left.D_{g}\right|_{q}=-\left.\left.\left(\frac{\partial f}{\partial x}\right)^{-1}\right|_{(p q)} \frac{\partial f}{\partial y}\right|_{(p q)}$.

Note: The formula for the derivative follows again from the chain wee:

$$
\begin{aligned}
0=\left.D f\left(g_{i}\right)\right|_{q} & =\left.D f\right|_{(p, q)} D(g(y), y)=\left.\left.\left(\frac{\partial f}{\partial x} \frac{\partial f}{\partial y}\right)\right|_{(p, q)}\binom{\frac{\partial g}{\partial y}}{1}\right|_{q} \\
& =\left.\left.\frac{\partial f}{\partial x}\right|_{(p, q)} D g\right|_{q}+\left.\frac{\partial f}{\partial y}\right|_{(p, q)}
\end{aligned}
$$

In our example above: $f(x, y)=x^{2}+y^{2}-1, x \neq 0$.

$$
\begin{aligned}
& \text { In our example above: } f(x, y)=x^{2}+y^{2}-1, x \neq 0 \text {. } \\
& \Rightarrow g(y):=\sqrt{1-y^{2}} \quad \text { for } x>0 \Rightarrow f(g(y), y)=0 \text {, and } \frac{\partial y}{\partial y}=\frac{-\frac{\partial f}{\partial y}}{\frac{\partial y}{\partial x}}=\frac{-2 y}{\partial x}=\frac{-y}{\sqrt{1-y^{2}}} .
\end{aligned}
$$

More generally:
A surface $M \subset \mathbb{R}^{3}$ can be defined via $F(x, y, z)=0, F: U \rightarrow \mathbb{R}^{3}$, i.e., $M=\{(x, y, z) \in U: F(x, y, z)=0\}$. Then the implicit fat the. tells us that if $F \in C^{1}(u)$ and $\frac{\partial F}{\partial z} \neq 0$, then locally the surface can be defined via the explicit equation $z=\phi(x, y)$.
Surfaces are special cases of manifolds, a concept that will be introduced in Analysis III.

For the proofs, we need an important theorem.
First, on a metric space (X, d), a map $f: X \rightarrow X$ is called a contraction if there is $0 \leq c<1$ s.t. $d(f(x), f(y)) \leq c d(x, y)$.

A point $x^{*} \in X$ is called fixed point if $f\left(x^{*}\right)=x^{*}$.
Note: Suppose f is a contraction and it has two fixed points: $f\left(x_{1}\right)=x_{1}, f\left(x_{2}\right)=x_{2}$.
Then $d\left(x_{1}, x_{2}\right)=d\left(f\left|x_{1}\right| f\left(x_{2}\right)\right) \leq c d\left(x_{1}, x_{2}\right)$ with $0 \leq c<1$, which implies $d\left(x_{1}, x_{2}\right)=0$ i.e., $x_{1}=x_{2}$.

So if a contraction has a fixed point, then it is mique.

Moreover:
Banach Fixed-Point Theorem (or: Contraction Mapping Principle): If X is a complete metric space, then any contraction $f: X \rightarrow X$ has a unique fixed point.

Proof: See homework 5.
(Define $x_{n+1}:=f\left(x_{n}\right) \forall n$ and show that $\left(x_{n}\right)$ is Cauchy \Rightarrow limit x^{*} exist since X is complete $\Rightarrow f\left(x^{*}\right)=f\left(\lim _{n \rightarrow \infty}\left(x_{n}\right)\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n+1}=x^{*}$.) D f coutiuvors. Why?

Note: This proof gives us an explicit way to construct the fixed point:
It is the limit of the sequence $x_{n+1}=f\left(x_{n}\right)$.
(le., choose some x_{0}, then $x_{1}=f\left(x_{0}\right), x_{2}=f\left(x_{1}\right)=f\left(f\left(x_{0}\right)\right)$ ire., $x_{n}=f^{\text {on }}\left(x_{0}\right)$.)

Next: Extra example not covered in the in -person class
Example: Newton's method for finding zeroes of $f(x)$.
We guess hope that the iteration $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=: F\left(x_{n}\right)$ converges to a zero of f. Suppose $f\left(x^{*}\right)=0$, $f^{\prime}\left(x^{*}\right) \neq 0$. Then $f\left(x^{*}\right)=x^{*}$, i.e., x^{*} is a fixed point of the map F.

With the Banach Fixed-Point Theorem we could now find sufficient conditions for Newton's method to converge by constructing a suitable complete metric space X on which F maps $X \rightarrow X$ and is a contraction.
E.g.: For $f(x)=x^{2}-3$, we have $F(x)=x-\frac{f(x)}{f^{\prime}(x)}=x-\frac{x^{2}-3}{2 x}=\frac{1}{2}\left(x+\frac{3}{x}\right)$. Here $F:[\sqrt{3}, \infty) \rightarrow[\sqrt{3}, \infty)$ ie., we can choose $X=[\sqrt{3}, \infty)$ (which is closed, so X with the standard metric (absolute value) is indeed complete).
Is F a contraction on X ?

$$
\begin{aligned}
d(F(x), F(y)) & =|F(x)-F(y)|=\frac{1}{2}\left|\left(x+\frac{3}{x}\right)-\left(y+\frac{3}{y}\right)\right| \\
& =\frac{1}{2}|x-y+\underbrace{3\left(\frac{1}{x}-\frac{1}{y}\right)}_{=}|=\frac{1}{2}\left|(x-y)\left(1-\frac{3}{x y}\right)\right| \\
& \left.\leq \frac{1}{2}|x-y| \underbrace{1-\frac{3}{x y}}_{\leq 1} \right\rvert\,
\end{aligned} \leq \frac{1}{2}|x-y| \text {, so yes, } F \text { is a contraction. }
$$

So, by Banach's fixed point the., $x_{u+1}=F\left(x_{n}\right)$ converges to the unique fixed point $x^{*}=\sqrt{3}$ for any initial $x_{0} \in[\sqrt{3}, \infty)$.
(In fact, for $x_{0} \in(0, \sqrt{3})$, we have $x_{1}=F\left(x_{0}\right)=\frac{1}{2}\left(x_{0}+\frac{3}{x_{0}}\right)>\sqrt{3}$, so we could use any $x_{0}>0$ as initial point for the iteration.)

