Today, we discuss the Inverse and Implicit Function Theorems.

Note:
• D(1) invertible c=>The Jacobian matrix
$$J_{ij}(p) = \frac{\partial f_i(p)}{\partial x_i}$$
 is invertible.
• Using the chain rule we find: $1 = D(f^{-1} \circ f)|_p = Df^{-1}|_{f(p)} Df|_p$
 $= Df^{-1}|_{f(p)} = (Df|_p)^{-1}$ identify derivative of chain rule
 $Df^{-1}|_{f(p)} = (Df|_p)^{-1}$ interval of equations $f_i(x_{i_1...,x_n}) = Y_{i_j}$, $i=1,...,n$
The inverse for the implies: The system of equations $f_i(x_{i_1...,x_n}) = Y_{i_j}$, $i=1,...,n$
can be solved for $x_{i_1...,i_n}$ in terms of $Y_{i_1...,i_n}$, $if x$ and y one in small enough
neighborhoods of p and q .
• If $f:V=W$ is C^k and f^{-1} exists and is C^k then f is called a C^k diffeomorphism.
• If any peV has a neighborhood \tilde{V} s.t. $f|_{\tilde{v}}: \tilde{V} \rightarrow f(\tilde{v})$ is a diffeomorphism, then f
is called a local diffeomorphism. Note: A fet that is a local diffeo, is not
necessarily a global diffeo, see HW.

Closely related to the Inverse Finction Theorem is the following question:
(et f:
$$\mathbb{R}^{n_m} \to \mathbb{R}^n$$
. Under which conditions can we sake $f(x_1y)=0$ for $x\in\mathbb{R}^n$ in terms of $y\in\mathbb{R}^n$?
In other words: In the system of equations $f_1(x_1,...,x_n,y_1,...,y_n)=0$
 $f_n(x_1,...,x_n,y_1,...,y_n)=0$,
can we solve for $x_n(y_1,...,y_n)$, ..., $x_n(y_1,...,y_n)=0$,
 $f_n(x_1,...,x_n,y_1,...,y_n)=0$,
can we solve for $x_n(y_1,...,y_n)$, ..., $x_n(y_1,...,y_n)$, at least locally?
 $E_{x_{n+1}} = f(x_1y) = 0$ has two local solutions $x_n(y) = \pm \sqrt{1-y^2}$.
More precisely: Solution possible in an open wighterbod except when $x = 0$ ($y = \pm 1$).
 $A + x = 0$, we have $\frac{25}{9x}|_{x=0} = 2x|_{x=0} = 0$, i.e., $\frac{25}{9x}|_{x=0}$ wet invertible.
 $=> 1t$ seems we require $\frac{25}{9x}$ to be invertible
This is queenlined in the following theorem:
Theorem (Implicit Function Theorem):
 $(a + M < \mathbb{R}^{n_m}$ be open, $f: (a \to \mathbb{R}^n \to \mathbb{R}^n)$
 $(a + M < \mathbb{R}^{n_m}$ be open, $f: (a \to \mathbb{R}^n \to \mathbb{R}^n)$
 $(a + M < \mathbb{R}^{n_m}$ be open, $f: (a \to \mathbb{R}^n \to \mathbb{R}^n)$
 $(a + M < \mathbb{R}^{n_m}$ be open, $f: (a \to \mathbb{R}^n \to \mathbb{R}^n)$
 $(a + M < \mathbb{R}^{n_m}$ be open, $f: (a \to \mathbb{R}^n \to \mathbb{R}^n)$
 $(a + M < \mathbb{R}^n) = (\frac{27}{9x} (p_n x) = (\frac{27}{9x} \dots \frac{27}{9x}) |_{(p_n y)}$ is invertible.
 $(a + M < \mathbb{R}^n + \frac{27}{9x} (p_n x) = (\frac{27}{9x} \dots \frac{27}{9x}) |_{(p_n y)}$

Then there are open sets VCTR^{h+n} and WCTRⁿ with $(p_1q) \in V, q \in W$ s.t. to every $Y \in W$ corresponds a unique X s.t. $(X,Y) \in V$ and f(X,Y) = 0. If this X := q(Y), then $q: W \rightarrow TR^h$ is $C^1, q(q) = p$, f(q(Y), Y) = 0, and $Dq|_q = -(\frac{\partial I}{\partial X})^{-1}|_{(p_1q_1)} \frac{\partial F}{\partial Y}|_{(p_1q_1)}$.

Note: The formula for the derivative follows again from the chain rule:

$$0 = Df(q_i)|_q = Df|_{(p_iq_i)} D(q_iv_i\gamma)|_q = \left(\frac{\partial f}{\partial x} \frac{\partial f}{\partial \gamma}\right)|_{(p_iq_i)} \left(\frac{\partial q}{\partial \gamma}\right)|_q$$

$$= \frac{\partial f}{\partial x}|_{(p_iq_i)} Dq|_q + \frac{\partial f}{\partial y}|_{(p_iq_i)}$$

In our example above:
$$f(x,y) = x^2 + y^2 - 1$$
, $x \neq 0$.

$$= 2 q(y) := \sqrt{1-y^2} \quad \text{for } x > 0 = 2 f(q(y),y) = 0 \text{ and } \frac{\partial y}{\partial y} = \frac{-\frac{\partial f}{\partial y}}{-\frac{\partial f}{\partial x}} = \frac{-Y}{\sqrt{1-y^2}} \sqrt{1-y^2}$$

More generally:
A surface
$$M \in \mathbb{T}R^3$$
 can be defined via $F(x,y,z)=0$, $F:U \to \mathbb{T}R^3$, i.e.,
 $M = \{(x,y,z) \in U: F(x,y,z)=0\}$. Then the implicit fed. thus tells us that if
 $F \in C^1(U)$ and $\frac{\partial F}{\partial z} \neq 0$, then locally the surface can be defined via the
explicit equation $z = \Phi(x,y)$.
Surfaces are special cases of manifolds, a concept that will be introduced
in Analysis III.

Moreover:

Banach Fixed-Point Theorem (or: Contraction Mapping Principle):
If X is a complete metric space, then any contraction
$$f: X \rightarrow X$$
 has a
Unique fixed point.

Proof: See Nomemork 5.
(Define
$$x_{nyn} := f(x_n) \forall n$$
 and show that (x_n) is Carchy $= 5$ kinit x^* exist
since X is complete $= 5$ $f(x^*) = f(\lim_{n \to \infty} |x_n|) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{nyn} = x^*$.)
 $f(x^*) = f(x^*) = f(\lim_{n \to \infty} |x_n|) = \lim_{n \to \infty} x_{nyn} = x^*$.

Note: This proof gives us an explicit way to construct the fixed point:
It is the limit of the sequence
$$x_{nen} = f(x_n)$$
.
(I.e., choose some x_0 , then $x_n = f(x_0)$, $x_2 = f(x_n) = f(f(x_0))$, i.e., $x_n = f^{on}(x_0)$.)

Mext: Extra example unit consider in the in-perior class
Example: Nontrol's methods for finding zeroes of
$$f(x)$$
.
We grees/hope that the identition $\chi_{neq} = \chi_n - \frac{f(m)}{f(k_n)} =: F(\chi_n)$ converges to a zero
of f. Suppose $f(x^n)=0$, $f'(x^n)\pm0$. Then $F(x^n)=x^n$ is a
fixed point of the map F.
With the Earder Fixed-Point Theorem we could now find sufficient conditions
for Nontrol's wethod to converge by constructing a suitable complete metric space X
on which F maps $X \to X$ and is a contraction.
Eq.: For $f(x)=x^n-3$, we have $F(x)=x-\frac{f(x)}{f'(x)}=\chi-\frac{x^{n-3}}{2x}=\frac{1}{2}(x+\frac{3}{X})$.
Hence $F:[15^n,\infty) \longrightarrow [15^n,\infty)$, i.e., we can choose $X=[15^n,\infty)$ (which is closed,
so X with the should and workic (absolute value) is indeed complete).
Is F a contraction on $X^{\frac{3}{2}}$
 $d(F(x),F(y))=|F(x)-F(y)|=\frac{1}{2}|(x+\frac{3}{X})-(y+\frac{3}{Y})|$
 $=\frac{1}{2}|X-y+3(\frac{1}{X}-\frac{1}{Y})|=\frac{1}{2}|(X-y)(1-\frac{3}{XY})|$
 $=\frac{1}{2}|X-y+3(\frac{1}{X}-\frac{1}{Y})|=\frac{1}{2}|(X-y)(1-\frac{3}{XY})|$
So, by Equals's fixed point then, $\chi_{neq} = F(\chi_n) = \frac{1}{2}(\chi_n+\frac{3}{X}) > 15$, so we
fixed point $\chi^* = \sqrt{3}$ for any initial $\chi_0 \in [\sqrt{3}^n,\infty)$.
(In fact, for $\chi_n \in (0,\sqrt{3})$, we have $\chi_1 = F(\chi_n) = \frac{1}{2}(\chi_n+\frac{3}{X}) > 15$, so we
could use any $\chi_n > 0$ as initial point for the iteration.)