Topology and Manifolds

Homework 3

Due on March 2, 2023, before class

Problem 1 [5 points]

Give a clean proof of the fact that for topological manifolds, connectedness implies path-connectedness.

Problem 2 [5 points]

Let M be a topological manifold and $p, q \in M$ with $p \neq q$.

- (a) Show that there exists a continuous function $f: M \to [0,1]$ with f(p) = 0 and f(q) = 1.
- (b) Now suppose M is also a smooth manifold. Show that then there exists a smooth function $f: M \to [0, 1]$ with f(p) = 0 and f(q) = 1.

Problem 3 [3 points]

Let \mathbb{P}^n be the *n*-dimensional real projective space. For distinct real a_0, \ldots, a_n , consider the function $f: \mathbb{P}^n \to \mathbb{R}$ defined by

$$f([x^0, \dots, x^n]) = \frac{\sum_{k=0}^n a_k(x^k)^2}{\sum_{k=0}^n (x^k)^2}.$$

Show that f is indeed a well-defined function, and that it is smooth.

Problem 4 [3 points]

Show that the *n*-dimensional real projective space \mathbb{P}^n (which we know is second-countable and Hausdorff) with the charts defined in class is a smooth manifold.

Problem 5 [4 points]

We consider the *n*-sphere \mathbb{S}^n , which, as a subspace of \mathbb{R}^{n+1} , we know is second-countable and Hausdorff.

(a) Let

$$U_i^+ = \{(x^1, \dots, x^{n+1}) \in \mathbb{R}^{n+1} : x^i > 0\} \text{ and } U_i^- = \{(x^1, \dots, x^{n+1}) \in \mathbb{R}^{n+1} : x^i < 0\}.$$

Define homeomorphisms $\varphi_i^{\pm}: U_i^{\pm} \cap \mathbb{S}^n \to \mathbb{B}^n := \{x \in \mathbb{R}^n: ||x|| < 1\}$ that orthogonally project on the $x^i = 0$ plane, thus proving that \mathbb{S}^n is a topological manifold. Then show that $\{(U_i^{\pm}, \varphi_i^{\pm})\}$ is a smooth atlas, and thus \mathbb{S}^n a smooth manifold.

(b) Show that the stereographic projections that we defined in class are also a smooth atlas.

Bonus Problem [4 extra points]

Recall from Analysis that a set $A \subset \mathbb{R}^d$ has measure zero if for all $\varepsilon > 0$ there exists a countable family $\{B_k\}_k$ of balls in \mathbb{R}^d such that

$$A \subset \bigcup_{k=1}^{\infty} B_k$$
 and $\sum_{k=1}^{\infty} \operatorname{Vol}_d(B_k) < \varepsilon$,

where Vol_d is the *d*-dimensional volume. Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be C^1 . Show that for m < n, $f(\mathbb{R}^m)$ has measure zero. Hint: Problem 3 (b) from Homework 1.