Constructor University Spring 2023 March 9, 2023

Topology and Manifolds

Homework 5

Due on March 16, 2023, before class

Problem 1 [5 points]

One more exercise about smoothness: Consider the *n*-sphere \mathbb{S}^n as a manifold with the atlas defined by the stereographic projections. This atlas is smooth as we showed in HW3. Prove that the antipodal map $\alpha : \mathbb{S}^n \to \mathbb{S}^n, \alpha(x) = -x$ is smooth.

Problem 2 [5 points]

(a) Show that the solution set of the equation

$$x^3 + y^3 + z^3 = 1$$

is a submanifold of dimension two in \mathbb{R}^3 .

(b) Define the function $f : \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = x^3 - 6xy + y^2.$$

Find all values of $c \in \mathbb{R}$ for which the level set $f^{-1}(c)$ is a submanifold of \mathbb{R}^2 .

Problem 3 [4 points]

Let $f : \mathbb{R}^n \to \mathbb{R}$ be smooth and a a regular value of f. Then $M = f^{-1}(a)$ is a submanifold of \mathbb{R}^n . Show that for every $p \in M$, the tangent space T_pM viewed as a subspace of \mathbb{R}^n is given by

$$T_p M = \left\{ (v_1, \dots, v_n) \in \mathbb{R}^n : \sum_{i=1}^n v_i \frac{\partial f}{\partial x^i}(p) = 0 \right\}.$$

Problem 4 [6 points]

Let det : $\operatorname{GL}(n,\mathbb{R}) \to \mathbb{R}$ denote the determinant function.

(a) Using matrix entries (X_i^j) as global coordinates on $\operatorname{GL}(n,\mathbb{R})$, show that the partial derivatives of det are given by

$$\frac{\partial}{\partial X_i^j} (\det X) = (\det X) (X^{-1})_j^i.$$

(b) Conclude that the differential of the determinant function is

$$d(\det)_X(B) = (\det X)\operatorname{tr}(X^{-1}B),$$

for $X \in GL(n, \mathbb{R})$ and $B \in T_X GL(n, \mathbb{R}) \simeq M(n, \mathbb{R})$, where $\operatorname{tr} X = \sum_{i=1}^n X_i^i$ is the trace of X.

(c) Show that $\det:\operatorname{GL}(n,\mathbb{R})\to\mathbb{R}$ is a smooth submersion.