Constructor University Spring 2023

Topology and Manifolds

Homework 6

Due on March 23, 2023, before class

Problem 1 [5 points]

In class we discussed the following lemma: Let M be a compact m-dimensional smooth manifold, $F : M \to \mathbb{R}^N$ a smooth injective immersion, and N > 2m + 1. Then there is a dense set of vectors $v \in \mathbb{S}^{N-1}$ such that $\pi_v \circ F$ is a smooth injective immersion, where $\pi_v(x) = x - \langle x, v \rangle v$ is the projection orthogonal to $v \in \mathbb{S}^{N-1}$. Finish the proof from class by showing that $\pi_v \circ F$ is indeed an immersion.

Problem 2 [5 points]

Finish the proof of the Whitney Embedding Theorem (compact case) from class by showing that the map F that was defined is indeed injective and an immersion.

Problem 3 [5 points]

Let X and Y be topological spaces and $f: X \to Y$ a continuous map. The map f is called *proper* if for every compact set $K \subset Y$ the preimage $f^{-1}(K)$ is also compact.

- (a) Give an example of a proper and an example of a non-proper continuous function $f : \mathbb{R} \to \mathbb{R}$.
- (b) Suppose X is compact and Y is Hausdorff. Show that then $f: X \to Y$ is proper.
- (c) Suppose $f : X \to Y$ is a bijective proper continuous map. Show that then f is a homeomorphism.

Problem 4 [5 points]

- (a) Consider the standard embedding $S^1 \subset \mathbb{R}^2$. For each point $p = (x, y) \in S^1$, define X(p) = (-y, x). Show that X(p) is a basis for T_pS^1 for all $p \in S^1$.
- (b) Consider the standard embedding $S^3 \subset \mathbb{R}^4$. For each point $p = (x, y, z, t) \in S^3$, define

$$X_1(p) = (-y, x, t, -z)$$

$$X_2(p) = (-z, -t, x, y)$$

$$X_3(p) = (-t, z, -y, x).$$

Show that $X_1(p), X_2(p), X_3(p)$ form a basis of $T_p S^3$ for all $p \in S^3$.