Topology and Manifolds

Homework 7

Due on March 30, 2023, before class

Problem 1 [4 points]

Prove that every Lie group homomorphism has constant rank.

Problem 2 [4 points]

Let G^0 be the identity component of a Lie group G. Prove that G^0 is a Lie group, dim G^0 = dim G, and that G^0 is a normal subgroup of G.

Problem 3 [4 points]

We consider the group $O_n(\mathbb{R})$ of orthogonal real $n \times n$ matrices (i.e., matrices whose columns and rows are orthonormal).

- (a) Prove that $O_n(\mathbb{R})$ is a compact group. (Hint: Consider the map $g \mapsto g^T g$, where g^T is the transpose of g.)
- (b) Show that the image of the homomorphism det : $O_n(\mathbb{R}) \to \mathbb{R}^*$ is the subgroup $\{-1, +1\}$.
- (c) Now consider the special orthogonal group $SO_n(\mathbb{R})$, i.e., the subgroup of $O_n(\mathbb{R})$ consisting of matrices g with det g = 1. Show that $SO_2(\mathbb{R})$ is isomorphic to the circle S^1 , and thus abelian. Is $O_2(\mathbb{R})$ also abelian?
- (d) Prove that $SO_3(\mathbb{R})$ is not abelian. (Hint: Consider rotations with different axes.)

Problem 4 [4 points]

(a) Prove the local coordinate formula for Lie brackets that was stated in class, i.e.,

$$[X,Y] = \sum_{i,j=1}^{n} \left(X^{i} \frac{\partial Y^{j}}{\partial x^{i}} - Y^{i} \frac{\partial X^{j}}{\partial x^{i}} \right) \frac{\partial}{\partial x^{j}}.$$

(b) Compute the Lie bracket explicitly for the following vector fields in \mathbb{R}^3 :

$$X = x \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + yz \frac{\partial}{\partial z}$$
$$Y = y \frac{\partial}{\partial x} + x(z+1) \frac{\partial}{\partial z}.$$

Problem 5 [4 points]

Prove the properties a) - e) of the Lie bracket that we discussed in class, i.e., bilinearity, antisymmetry, the Jacobi identity, behavior under multiplication with C^{∞} functions, and behavior under pushforwards.