Constructor University Spring 2023 March 30, 2023

Topology and Manifolds

Homework 8

Due on April 13, 2023, before class

Problem 1 [4 points]

Let M be the open submanifold of \mathbb{R}^2 where both x and y are positive, and let $F: M \to M$ be the map $F(x, y) = (xy, \frac{y}{x})$. Show that F is a diffeomorphism, and compute F_*X and F_*Y , where

$$X = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}, \quad Y = y\frac{\partial}{\partial x}$$

Problem 2 [3 points]

Compute the flow of the vector field $X = x \frac{\partial}{\partial x} + 2y \frac{\partial}{\partial y}$ on \mathbb{R}^2 .

Problem 3 [4 points]

For any integer $n \geq 1$, by identifying \mathbb{C}^n with \mathbb{R}^{2n} in the usual way, we can consider the odddimensional sphere \mathbb{S}^{2n-1} as a subset of \mathbb{C}^n . Define a global flow on \mathbb{S}^{2n-1} by $\theta(t, z) = e^{it}z$. Show that the infinitesimal generator of θ is a smooth nowhere-vanishing vector field on \mathbb{S}^{2n-1} . For n = 2, find the integral curves of θ .

Problem 4 [5 points]

Let X and Y be two (smooth) vector fields on a smooth manifold M. Let θ_t be the local flow of Y. Prove that

$$\left. \frac{d}{dt} \right|_{t=0} \left((\theta_{-t})_* X \right) = [Y, X],$$

where $(\theta_{-t})_*$ is the pushforward of $\theta_{-t} : M \to M$, and [X, Y] the Lie bracket. Start with the fact that for any smooth $f : M \to \mathbb{R}$ one can write

$$f(\theta_t(x)) = f(x) + t(Yf)(x) + t^2 E(x,t)$$

for some smooth E(x,t) with $E(x,0) = \frac{1}{2}(Y^2f)(x)$, and then compute directly.

Problem 5 [4 points]

Consider the smooth manifold $M = \{(x, y) \in \mathbb{R}^2 : x > 0\}$, and the smooth function $f : M \to \mathbb{R}$, $f(x, y) = \frac{x}{x^2 + y^2}$. Compute the coordinate representation for df and determine the set of all points $p \in M$ at which $df_p = 0$, once in standard coordinates (x, y), and once in polar coordinates (r, φ) .