Topology and Manifolds

Homework 8

Due on April 13, 2023, before class

Problem 1 [4 points]

Let M be the open submanifold of \mathbb{R}^{2} where both x and y are positive, and let $F: M \rightarrow M$ be the map $F(x, y)=\left(x y, \frac{y}{x}\right)$. Show that F is a diffeomorphism, and compute $F_{*} X$ and $F_{*} Y$, where

$$
X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}, \quad Y=y \frac{\partial}{\partial x}
$$

Problem 2 [3 points]

Compute the flow of the vector field $X=x \frac{\partial}{\partial x}+2 y \frac{\partial}{\partial y}$ on \mathbb{R}^{2}.

Problem 3 [4 points]

For any integer $n \geq 1$, by identifying \mathbb{C}^{n} with $\mathbb{R}^{2 n}$ in the usual way, we can consider the odddimensional sphere $\mathbb{S}^{2 n-1}$ as a subset of \mathbb{C}^{n}. Define a global flow on $\mathbb{S}^{2 n-1}$ by $\theta(t, z)=e^{i t} z$. Show that the infinitesimal generator of θ is a smooth nowhere-vanishing vector field on $\mathbb{S}^{2 n-1}$. For $n=2$, find the integral curves of θ.

Problem 4 [5 points]

Let X and Y be two (smooth) vector fields on a smooth manifold M. Let θ_{t} be the local flow of Y. Prove that

$$
\left.\frac{d}{d t}\right|_{t=0}\left(\left(\theta_{-t}\right)_{*} X\right)=[Y, X]
$$

where $\left(\theta_{-t}\right)_{*}$ is the pushforward of $\theta_{-t}: M \rightarrow M$, and $[X, Y]$ the Lie bracket. Start with the fact that for any smooth $f: M \rightarrow \mathbb{R}$ one can write

$$
f\left(\theta_{t}(x)\right)=f(x)+t(Y f)(x)+t^{2} E(x, t)
$$

for some smooth $E(x, t)$ with $E(x, 0)=\frac{1}{2}\left(Y^{2} f\right)(x)$, and then compute directly.
Problem 5 [4 points]
Consider the smooth manifold $M=\left\{(x, y) \in \mathbb{R}^{2}: x>0\right\}$, and the smooth function $f: M \rightarrow$ $\mathbb{R}, f(x, y)=\frac{x}{x^{2}+y^{2}}$. Compute the coordinate representation for $d f$ and determine the set of all points $p \in M$ at which $d f_{p}=0$, once in standard coordinates (x, y), and once in polar coordinates (r, φ).

