Topology and Manifolds

Homework 9

Due on April 20, 2023, before class

Problem 1 [3 points]

Let M be a smooth manifold, and $\omega \in T_{p}^{*} M$. Suppose two local coordinates $\left(x^{j}\right)$ and $\left(\tilde{x}^{j}\right)$ are given for some neighborhood of $p \in M$. How do the components of ω in one set of coordinates change when expressed in the other coordinates?

Problem 2 [3 points]

Let V be a vector space, then $V^{*} \otimes \ldots \otimes V^{*}$ (k times) is called the space of covariant k tensors. A tensor T is called alternating if $T\left(\ldots, v_{i}, \ldots, v_{j}, \ldots\right)=-T\left(\ldots, v_{j}, \ldots, v_{i}, \ldots\right)$, and symmetric if $T\left(\ldots, v_{i}, \ldots, v_{j}, \ldots\right)=T\left(\ldots, v_{j}, \ldots, v_{i}, \ldots\right)$.

Now consider $V=\mathbb{R}^{3}$. Let $\left(e^{1}, e^{2}, e^{3}\right)$ (note the upper indices) be the standard dual basis for $\left(\mathbb{R}^{3}\right)^{*}$.
(a) Show that $e^{1} \otimes e^{2} \otimes e^{3}$ is not equal to a sum of an alternating tensor and a symmetric tensor.
(b) Can $e^{1} \otimes e^{2}+e^{2} \otimes e^{1} \in V^{*} \otimes V^{*}$ be written as $w^{1} \otimes w^{2}$ for some $w^{1}, w^{2} \in V^{*}$? (Prove your answer.)

Problem 3 [3 points]

(a) Let $\omega \in \Lambda^{k}\left(V^{*}\right), \eta \in \Lambda^{\ell}\left(V^{*}\right)$. Prove that $\omega \wedge \eta=(-1)^{k \ell} \eta \wedge \omega$.
(b) Let $\omega^{1}, \ldots, \omega^{k} \in \Lambda^{1}\left(V^{*}\right)$ and $v_{1}, \ldots, v_{k} \in V$. Prove that

$$
\omega^{1} \wedge \ldots \wedge \omega^{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det} \omega^{j}\left(v_{i}\right) .
$$

Problem 4 [5 points]

Let $F: M \rightarrow N$ be a smooth map between smooth manifolds M, N, and let ω, η be differential forms on N, then the pullbacks $F^{*} \omega$ and $F^{*} \eta$ are differential forms on M.
(a) Prove that $F^{*}(\omega \wedge \eta)=\left(F^{*} \omega\right) \wedge\left(F^{*} \eta\right)$.
(b) Prove that in any smooth chart,

$$
F^{*}\left(\sum_{I}^{\prime} \omega_{I} d y^{i_{1}} \wedge \ldots \wedge d y^{i_{k}}\right)=\sum_{I}^{\prime}\left(\omega_{I} \circ F\right) d\left(y^{i_{1}} \circ F\right) \wedge \ldots \wedge d\left(y^{i_{k}} \circ F\right)
$$

(c) Let $\left(U,\left(x^{i}\right)\right)$ and $\left(\tilde{U},\left(\tilde{x}^{j}\right)\right)$ be overlapping smooth coordinate charts on the smooth n manifold M. Prove that on $U \cap \tilde{U}$ we have

$$
d \tilde{x}^{1} \wedge \ldots \wedge d \tilde{x}^{n}=\operatorname{det}\left(\frac{\partial \tilde{x}^{j}}{\partial x^{i}}\right) d x^{1} \wedge \ldots \wedge d x^{n}
$$

Problem 5 [6 points]

We consider the manifold \mathbb{R}^{n}. Recall that for a k-form ω on \mathbb{R}^{n} we define the exterior derivative $d \omega$ as the $(k+1)$-form

$$
d\left(\sum_{J}^{\prime} \omega_{J} d x^{J}\right)=\sum_{J}^{\prime} d \omega_{J} \wedge d x^{J},
$$

where $d \omega_{J}$ is the differential of $\omega_{J}: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Prove that d has the following properties:
(a) d is \mathbb{R}-linear.
(b) For a smooth k-form ω and a smooth ℓ-form η we have

$$
d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta
$$

(c) $d \circ d=0$.
(d) Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a smooth map and ω a smooth k-form on \mathbb{R}^{m}, then

$$
F^{*}(d \omega)=d\left(F^{*} \omega\right)
$$

