Constructor University Spring 2023

Topology and Manifolds

Homework 10

Due on April 27, 2023, before class

Problem 1 [4 points]

On \mathbb{R}^3 , consider the 2-form

 $\Omega = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy.$

(a) Compute Ω in spherical coordinates (ρ, φ, θ) defined by

 $(x, y, z) = (\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \theta).$

(b) Compute $d\Omega$ in both Cartesian and spherical coordinates and verify that both expressions represent the same 3-form.

Problem 2 [2 points]

Let $F : \mathbb{R}^2 \to \mathbb{R}^3$, $F(u, v) = (u^2, v^3, e^u - v)$ and let ω be the 2-form $\omega = xdx \wedge dy + zdx \wedge dz$ on \mathbb{R}^3 . Compute the pullback $F^*\omega$.

Problem 3 [8 points]

Suppose M, N are nonempty oriented smooth n-manifolds, and ω , η are compactly supported n-forms on M. Prove the following properties:

(a) Linearity: If $a, b \in \mathbb{R}$, then

$$\int_M (a\omega + b\eta) = a \int_M \omega + b \int_M \eta.$$

- (b) Orientation reversal: If -M denotes M with the opposite orientation, then $\int_{-M} \omega = -\int_{M} \omega$.
- (c) Positivity: If ω is nonvanishing and positively oriented, then $\int_M \omega > 0$.
- (d) Diffeomorphism invariance: If $F: N \to M$ is an orientation-preserving diffeomorphism, then

$$\int_M \omega = \int_N F^* \omega$$

Problem 4 [6 points]

Let G be a Lie group acting on a smooth manifold M, and let α be a differential 1-form on M. The group action via g is denoted by $T_g: M \to M$, i.e., $T_g(m) = g \cdot m$. We say that α is G-invariant when $T_g^* \alpha = \alpha$ for all $g \in G$.

(a) Show that the differential 1-forms

$$\alpha = x \, \mathrm{d}x + y \, \mathrm{d}y, \quad \text{and} \quad \beta = x \, \mathrm{d}y - y \, \mathrm{d}x$$

on \mathbb{R}^2 are invariant under the group of rotations SO(2).

(b) Let ω be a differential form on $\mathbb{R}^2 \setminus \{0\}$ which is invariant under SO(2). Show that ω can be expressed as

$$f(r)\alpha + g(r)\beta,$$

where $r = \sqrt{x^2 + y^2}$ and f and g are smooth functions defined on $\mathbb{R}^2 \setminus \{0\}$.