Constructor University Spring 2023

Topology and Manifolds

Homework 11

Due on May 4, 2023, before class

Problem 1 [8 points]

The Brouwer fixed-point theorem states that every continuous function $f:\overline{B}^n \to \overline{B}^n$ has a fixed point (i.e., f(x) = x for at least one x), where \overline{B}^n is the closed *n*-dimensional unit ball. Prove this theorem using Stokes' theorem.

Hint: First, use a simple picture to show that if f has no fixed point, then there exists a retraction: a continuous function $F: \overline{B}^n \to S^{n-1}$ (where $S^{n-1} = \partial \overline{B}^n$) with every $x \in S^{n-1}$ a fixed point. Then, use Stokes' theorem to prove that such a retraction cannot exist.

Problem 2 [8 points]

We consider the upper hemisphere $M := \{x^2 + y^2 + z^2 \leq 1, z \geq 0\}$ as a manifold with boundary. Let ω be the 2-form that is given in standard coordinates by

 $\omega = x^3 dy \wedge dz - y^3 dx \wedge dz + z^3 dx \wedge dy.$

Compute $\int_{\partial M} \omega$ in two ways:

- (a) By using Stokes' theorem.
- (b) Directly from the definition of the integral. (Note that the trigonometric integrals in the end are a bit nasty, feel free to just look them up.)

(Hint: Remember spherical coordinates.)

Problem 3 [4 points]

Let V be a finite-dimensional vector space, and ω a 2-covector on V. We call ω nondegenerate if $\hat{\omega}: V \to V^*$, defined by $\hat{\omega}(v) = v \lrcorner \omega$, is invertible. Prove that this is equivalent to:

- (a) For each $v \in V$, $v \neq 0$, there exists $w \in V$ such that $\omega(v, w) \neq 0$.
- (b) In terms of some (hence every) basis, the matrix ω_{ij} of ω is non-singular.