Week 1: Basic Calculus Review

1. Single

Find the (complex) roots of the polynomial

$$p(x) = x^2 + 4x + 13$$

(a)
$$x_1 = +2 + 3i$$
, $x_2 = +2 - 3i$

(b)
$$x_1 = -3 + 2i$$
, $x_2 = -3 - 2i$

(c)
$$x_1 = +3 - 2i$$
, $x_2 = +3 + 2i$

(d)
$$x_1 = -2 - 3i$$
, $x_2 = -2 + 3i$

2. Single

Let p(x) be a polynomial of degree n with arbitrary complex coefficients. Which of the following is true?

- (a) If $p(x) = c(x \alpha_1)(x \alpha_2)...(x \alpha_n)$ with $\alpha_1, ..., \alpha_n \in \mathbb{R}$, then the roots of p(x) can be real and also imaginary.
- (b) p(x) has exactly n roots (considering multiplicities)
- (c) p(x) can have no roots
- (d) If z is a root, then its complex conjugate \overline{z} is also a root

3. Multi Single

Find all the values of the parameter λ for which the equation

$$2x^2 - \lambda x + \lambda = 0$$

has no real solutions.

- (a) $\lambda \in \{0, 8\}$
- (b) $\lambda \in (0, 8)$
- (c) $\lambda \in (-\infty, 0) \cup (8, \infty)$
- (d) $\lambda \in (-8, 0)$

4. Multiple Multiple

The number $5.21\overline{37}$ is:

- (a) an integer
- (b) a real number
- (c) a rational number
- (d) a natural number

MULTI Single

Assuming that z = a + bi is a complex number, compute real and imaginary part of $\frac{1}{z^2}$

(a)
$$\operatorname{Re}\left(\frac{1}{z^2}\right) = \frac{a^2 - b^2}{(a^2 - b^2)^2}, \operatorname{Im}\left(\frac{1}{z^2}\right) = \frac{2ab}{(a^2 - b^2)^2}$$

(b) $\operatorname{Re}\left(\frac{1}{z^2}\right) = \frac{a^2 - b^2}{(a^2 + b^2)^2}, \operatorname{Im}\left(\frac{1}{z^2}\right) = \frac{-2ab}{(a^2 + b^2)^2}$

(b)
$$\operatorname{Re}\left(\frac{1}{z^2}\right) = \frac{a^2 - b^2}{(a^2 + b^2)^2}, \operatorname{Im}\left(\frac{1}{z^2}\right) = \frac{-2ab}{(a^2 + b^2)^2}$$

(c)
$$\operatorname{Re}\left(\frac{1}{z^2}\right) = \frac{a^2 + b^2}{(a^2 + b^2)^2}, \operatorname{Im}\left(\frac{1}{z^2}\right) = \frac{-2ab}{(a^2 + b^2)^2}$$

(d) $\operatorname{Re}\left(\frac{1}{z^2}\right) = \frac{a^2 + b^2}{(a^2 + b^2)^2}, \operatorname{Im}\left(\frac{1}{z^2}\right) = \frac{2ab}{(a^2 + b^2)^2}$

6. MULTI Single

Let p(x) be a polynomial of degree n with **real** coefficients. Which of the following is true?

- (a) p(x) can have less than n complex roots
- (b) If p(x) is odd, it can have no roots
- (c) If z is a root, then its complex conjugate is z^* is also a root
- (d) p(x) has n distinct real roots

Compute
$$\left| \frac{1+i}{2-i} \right|$$
.

(a)
$$\left| \frac{1+i}{2-i} \right| = \frac{2}{3}$$

(b)
$$\left| \frac{1+i}{2-i} \right| = \frac{2}{5}$$

(c)
$$\left| \frac{1+i}{2-i} \right| = \sqrt{\frac{2}{3}}$$

$$(\mathrm{d}) \left| \frac{1+i}{2-i} \right| = \sqrt{\frac{2}{5}}$$

Which of the following does not describe the rational numbers \mathbb{Q} ?

(a)
$$\mathbb{Q} = \left\{ \frac{n}{m} \mid n, m \in \mathbb{Z} \text{ and } m \neq 0 \right\}$$

(b)
$$\mathbb{Q} = \left\{ \frac{n}{m} \mid n, m \in \mathbb{N} \right\} \cup \left\{ \frac{-n}{m} \mid n, m \in \mathbb{N} \right\} \cup \{0\}$$

(c)
$$\mathbb{Q} = \left\{ \frac{n}{m} \mid n, m \in \mathbb{N} \right\}$$

(c)
$$\mathbb{Q} = \left\{ \frac{n}{m} \mid n, m \in \mathbb{N} \right\}$$

(d) $\mathbb{Q} = \left\{ \frac{n}{m} \mid n \in \mathbb{Z} \text{ and } m \in \mathbb{N} \right\}$

Let $q(x) = x^2 + 1$. Determine the domain and range of q(x).

(a)
$$Domain(g) = [0, \infty), Range(g) = (-\infty, \infty)$$

(b)
$$Domain(q) = (-\infty, \infty), Range(q) = [0, \infty)$$

(c)
$$Domain(g) = (-\infty, \infty), Range(g) = [1, \infty)$$

(d)
$$Domain(g) = [0, \infty) Range(g) = (-\infty, \infty)$$

Let $f(x) = 2^{-9x+3}$. Determine the domain and range of f(x) and its inverse $f^{-1}(x)$.

- (a) $Dom(f) = (-\infty, \infty), Ran(f) = (0, \infty),$ $Dom(f^{-1}) = (0, \infty), Ran(f^{-1}) = (-\infty, \infty)$ (b) $Dom(f) = [0, \infty), Ran(f) = [0, \infty),$
- $Dom(f^{-1}) = [0, \infty), Ran(f) = [0, \infty),$ $Dom(f^{-1}) = [0, \infty), Ran(f^{-1}) = [0, \infty)$ (c) $Dom(f) = (0, \infty), Range(f) = (-\infty, \infty),$ $Dom(f^{-1}) = (-\infty, \infty), Ran(f^{-1}) = (0, \infty)$
- (d) $Dom(f) = (-\infty, \infty), Ran(f) = [0, \infty),$ $Dom(f^{-1}) = [0, \infty), Ran(f^{-1}) = (-\infty, \infty)$

Total of marks: 10