Week 2: Elementary Analytical Geometry

1. Multi Single

What is the angle (in radian, i.e., where 360° corresponds to 2π) between the vectors

and

- (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$
- (c) π
- (d) 0

2. MULTI Single

If \vec{u} and \vec{v} are perpendicular unit vectors, then

- (a) $|\vec{u} \vec{v}| = 1$ (b) $|\vec{u} - \vec{v}| = \sqrt{2}$
- (c) $|\vec{u} \vec{v}| = 0$
- (d) $|\vec{u} \vec{v}|$ cannot be computed without further information on \vec{u} and \vec{v}

How long is the vector $(1, 1, \ldots, 1)$ in 16 dimensions?

- (a) Length = 1
- (b) Length = 4
- (c) Length = 16
- (d) Length = 32

4. MULTI Single

Which of the following formulas is not true (for $\vec{u}, \vec{v} \in \mathbb{R}^n$)?

(a)
$$|\vec{u} \times \vec{v}| \le |\vec{u}| |\vec{v}|$$

(b) $\cos(\theta) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}|^2 |\vec{v}|^2}$
(c) $|\vec{u} - \vec{v}|^2 = |\vec{u}|^2 - 2|\vec{u}| |\vec{v}| \cos(\theta) + |\vec{v}|^2$
(d) $|\vec{u} + \vec{v}| \le |\vec{u}| + |\vec{v}|$

5. MULTI Single

Let x, y, z be such that x + y + z = 0. Define u = (x, y, z) and v = (z, x, y). What is the value of $\frac{u \cdot v}{|u||v|}$?

(a)
$$\frac{-x^2 + yz}{x^2 + y^2 + (x - y)^2}$$

(b) $-\frac{1}{2}$ (c) 1 (d) 0

6. MULTI Single

A line is given by $\vec{r} = \lambda \vec{a} + \vec{b}$, with $\vec{a} = (1, -1, 4)$ and $\vec{b} = (4, 5, 6)$, while the equation of a plane is given by -2x + 2y + z = 17. What are the coordinates of the point P where the line and plane intersect?

- (a) The line and the plane intersect infinitely many times
- (b) P = (3, 3, 17)
- (c) The line and the plane do not intersect
- (d) P = (-1, 4, 7)
- 7. MULTI Single

What is the equation of the hyperplane, given by $\begin{vmatrix} z \\ x \\ y \\ z \end{vmatrix} =$

$$\vec{p}_0 + \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$$
 with

$$\vec{p}_0 = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \, \vec{a} = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \, \vec{b} = \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \, \vec{c} = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}, \, \alpha, \beta, \gamma \in \mathbb{R}$$
(a) $t + x - y - z - 1 = 0$

(b)
$$t + x - y + z - 1 = 0$$

(c) $-t - x - y - z + 1 = 0$

(d)
$$-t - x - y + z + 1 = 0$$

8. MULTI Single

Find the cross product $\vec{u} \times \vec{v}$ of $\vec{u} = \langle 3, 2, -1 \rangle$, $\vec{v} = \langle 1, 1, 0 \rangle$

- (a) $\langle -1, -1, 5 \rangle$ (b) $\langle -6, -4, 2 \rangle$ (c) $\langle 1, -1, 1 \rangle$ (d) $\langle 6, -4, 2 \rangle$
- 9. Multi Single

Find the unit vector along the direction of the cross product $\vec{u} \times \vec{v}$ of $\vec{u} = \langle 7, -1, 3 \rangle$, $\vec{v} = \langle 2, 0, -2 \rangle$.

(a)
$$\frac{1}{\sqrt{108}}\langle -2, -10, 2 \rangle$$

(b) $\frac{1}{408}\langle 2, 20, 2 \rangle$
(c) $\frac{1}{\sqrt{408}}\langle 2, 20, 2 \rangle$
(d) $\frac{1}{108}\langle -2, -10, 2 \rangle$

10. MULTI Single

Let
$$\epsilon_{ijk} = \begin{cases} 1 & \text{if } (i j k) = (1 2 3), (2 3 1), \text{ or } (3 1 2) \\ -1 & \text{if } (i j k) = (1 3 2), (3 2 1), \text{ or } (2 1 3) \\ 0 & \text{else} \end{cases}$$

Consider $\vec{u} = \langle u_1, u_2, u_3 \rangle$ and $\vec{v} = \langle v_1, v_2, v_3 \rangle$. Which of the following is equivalent to the kth component of $\vec{u} \times \vec{v}$

(a)
$$[\vec{u} \times \vec{v}]_k = \sum_{i,j=1}^3 \epsilon_{ijk} u_i v_j$$

(b) $[\vec{u} \times \vec{v}]_k = \sum_{i,j=1}^3 \epsilon_{ijk} (u_i v_j + v_i u_j)$
(c) $[\vec{u} \times \vec{v}]_k = \sum_{i,j=1}^3 \epsilon_{ijk} (u_i v_j - v_i u_j)$
(d) $[\vec{u} \times \vec{v}]_k = \sum_{i,j=1}^3 \epsilon_{ijk} v_i u_j$

Total of marks: 10