Week 3: Vector Spaces, Linear Maps, Matrices

1. MULTI Single

> Does the set of all positive reals together with the following addition and multiplication by scalar $(\mathbb{R}_+, \tilde{+}, \tilde{\cdot})$ form a vector space over \mathbb{R} (with the scalars $c \in \mathbb{R}$)?

$$v_1 \, \widetilde{+} \, v_2 \stackrel{def}{=} v_1 \cdot v_2; \ c \, \widetilde{\cdot} \, v_2 \stackrel{def}{=} c \cdot v_2$$

- (a) $(\mathbb{R}_+, \tilde{+}, \tilde{\cdot})$ is not a vector space over \mathbb{R} (b) $(\mathbb{R}_+, \tilde{+}, \tilde{\cdot})$ is a vector space over \mathbb{R}

2. MULTI Single

Is \mathbb{Z} , the set of all integers, a field?

- (a) Yes.
- (b) No.
- 3. MULTI Single

Find a basis for
$$\left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \middle| 7x + 2y - 5z = 0 \right\} \subset \mathbb{R}^3.$$
(a)
$$\begin{bmatrix} 5 \\ 0 \\ -7 \end{bmatrix}, \begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix}$$
(b)
$$\begin{bmatrix} 5 \\ 0 \\ 7 \end{bmatrix}, \begin{bmatrix} 0 \\ 5 \\ 2 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 5\\0\\7 \end{bmatrix}$$
, $\begin{bmatrix} 10\\5\\14 \end{bmatrix}$
(d) $\begin{bmatrix} 5\\0\\-7 \end{bmatrix}$, $\begin{bmatrix} 0\\5\\2 \end{bmatrix}$

4. MULTI Single
$$\left(\begin{bmatrix} 3a \end{bmatrix} \right)$$

Find a basis for $\left\{ \begin{bmatrix} 3a\\ -7a\\ 11a \end{bmatrix} \in \mathbb{R}^3 \middle| a \in \mathbb{R} \right\} \subset \mathbb{R}^3.$

(a)
$$\begin{bmatrix} -3\\ -7\\ 11 \end{bmatrix}$$

(b) $\begin{bmatrix} 15\\ -35\\ 55 \end{bmatrix}$
(c) $\begin{bmatrix} 51\\ -118\\ 187 \end{bmatrix}$

(d) $\begin{bmatrix} 4\\7\\4 \end{bmatrix}$

5. MULTI Single

Which of the following is not a basis for the space of all cubic polynomials $P_3(\mathbb{R})$?

(a)
$$\mathfrak{B} = \{x^3 - x^2, x^2 - x, x - 1, 1\}$$

(b) $\mathfrak{B} = \{x^3 + x^2 + x + 1, (x - 6)^2, x - 10, 1\}$
(c) $\mathfrak{B} = \{x^3 - x^2, x^3 - x, x^2 - x, x^3 - 1\}$
(d) $\mathfrak{B} = \{x^3, x^2, x, 1\}$

6. MULTI Single

Which of the following functions $f : \mathbb{R}^2 \to \mathbb{R}, (x_1, x_2) \mapsto f(x_1, x_2)$ is linear (in the sense of linear maps as defined in class)?

- (a) $f(x_1, x_2) = \sin(x_1) + \sin(x_2)$ (b) $f(x_1, x_2) = 5x_1$ (c) $f(x_1, x_2) = 7x_1x_2$ (d) $f(x_1, x_2) = (x_1)^3 + 6(x_2)^4$
- 7. MULTI Single

Calculate the matrix product:

$$\begin{bmatrix} 1 & 2 & 9 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix} = ?$$

(a)
$$\begin{bmatrix} -6 & 9 & 8 \\ 2 & 5 & 4 \\ 5 & 9 & 8 \end{bmatrix}$$

(b)
$$\begin{bmatrix} -6 & 10 & 8 \\ 2 & 5 & 4 \\ 5 & 9 & 7 \end{bmatrix}$$

(c)
$$\begin{bmatrix} -6 & 10 & 8 \\ 2 & 6 & 4 \\ 5 & 9 & 7 \end{bmatrix}$$

(d)
$$\begin{bmatrix} -6 & 9 & 8 \\ 2 & 6 & 4 \\ 5 & 9 & 8 \end{bmatrix}$$

8. MULTI Single Let

$$\mathcal{R} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

Which is the inverse of \mathcal{R} ? (The inverse of \mathcal{R} is the matrix \mathcal{R}^{-1} such that $\mathcal{R}^{-1}\mathcal{R} = 1$ (the identity matrix with 1's on the diagonal, and 0's everywhere else).

(a)
$$\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

(b)
$$\begin{bmatrix} -\cos\theta & -\sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}$$

(c)
$$\begin{bmatrix} -\cos\theta & \sin\theta \\ -\sin\theta & -\cos\theta \end{bmatrix}$$

(d)
$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

9.
$$\begin{bmatrix} \text{were} \\ \text{isigle} \end{bmatrix}$$

Let

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} B = \begin{bmatrix} 2 & 0 \\ 2 & 2 \end{bmatrix} C = \begin{bmatrix} 3 & 3 \\ 0 & 3 \end{bmatrix}$$

Calculate $A \cdot B \cdot C$
(a)
$$\begin{bmatrix} 24 & 24 \\ 2 & 6 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 6 & 6 \\ 6 & 6 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 12 & 18 \\ 12 & 18 \\ 12 & 18 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 6 & 6 \\ 12 & 18 \end{bmatrix}$$

10.
$$\begin{bmatrix} \text{were} \\ \text{isigle} \end{bmatrix}$$

Let

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} B = \begin{bmatrix} 99 & 0 \\ 99 & 99 \\ 99 & 0 \\ 99 & 99 \end{bmatrix} C = \begin{bmatrix} 3 \\ 0 \\ 3 \\ 3 \end{bmatrix}$$

Which of the following is a valid matrix multiplication?

(a) $C^T \cdot B^T \cdot A^T$ (b) $A^T \cdot B^T \cdot C$ (c) $B \cdot A^T \cdot C$ (d) $A \cdot B \cdot C$

Total of marks: 10