Week 5: Kernel, range, rank-nullity theorem, matrix inverse

 $1.$ MULTI ✄ \overline{a} Single $^{\prime}$ Find the inverse of $A =$ $\sqrt{ }$ $\overline{}$ $\frac{1}{2}$ $-\frac{1}{2}$ $\begin{pmatrix} 0 & 2 & 2 \\ 1 & 0 & 1 \end{pmatrix}$ 2 $\frac{1}{2}$ $rac{1}{2}$ 1 1 $\vert \cdot$ (a) $A^{-1} =$ $\sqrt{ }$ $\overline{}$ -2 -3 2 4 4 2 2 $4 -2$ 1 $\overline{1}$ (b) $A^{-1} =$ $\sqrt{ }$ $\overline{}$ -2 -3 2 4 4 2 2 -4 -2 1 $\overline{1}$ (c) the inverse does not exist (d) $A^{-1} =$ $\sqrt{ }$ $\overline{}$ -2 -3 2 $4 \t -2$ 2 $4 -2$ 1 $\overline{1}$ $2.$ MULTI \overline{a} Single \overline{a} Find the inverse of $A =$ $\sqrt{ }$ $\overline{}$ 3.5 −1 0.5 10 −3 2 2.5 −1 1.5 1 $\vert \cdot$ (a) $A^{-1} =$ $\sqrt{ }$ $\overline{}$ 0 1 1 2 -1 -2 -1 1 -2 1 $\overline{1}$ (b) $A^{-1} =$ $\sqrt{ }$ $\overline{}$ 0 1 1 $2 -1 -2$ 1 1 2 1 $\overline{1}$ (c) the inverse does not exist (d) $A^{-1} =$ $\sqrt{ }$ $\overline{}$ 0 1 1 $2 -1 -2$ 1 1 −2 1 $\overline{1}$ $3.$ MULTI \overline{a} Ĭ. Single

separation of the set of th Find the inverse of $A =$ $\sqrt{ }$ $\overline{}$ 1 −1 1 −1 1 1 1 1 1 1 $\vert \cdot$ (a) $A^{-1} =$ $\sqrt{ }$ $\overline{}$ $0.5 -0.5$ 0.5 −0.5 0 0.5 $0.5 -0.5 = 0$ 1 $\overline{1}$ (b) $A^{-1} =$ $\sqrt{ }$ $\overline{}$ $0 -0.5 0.5$ −0.5 0 0.5 0.5 0.5 0 1 $\overline{1}$ $(c) A^{-1} =$ $\sqrt{ }$ $\overline{1}$ $0.5 -0.5 0$ −0.5 0 0.5 0.5 0.5 0 1 $\overline{1}$ (d) the inverse does not exist

Ĭ. \overline{a}

 $4.$ MULTI ✄ Single

Find the kernel of
$$
A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}
$$
.
\n(a) $\ker(A) = \text{span}\left\{ \begin{bmatrix} 2 \\ 1 \\ -1 \\ 0 \end{bmatrix} \right\}$
\n(b) $\ker(A) = \text{span}\left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\}$
\n(c) $\ker(A) = \text{span}\left\{ \begin{bmatrix} -2 \\ 1 \\ -1 \\ -1 \\ 0 \end{bmatrix} \right\}$
\n(d) $\ker(A) = \text{span}\left\{ \begin{bmatrix} -2 \\ -2 \\ 1 \\ 0 \end{bmatrix} \right\}$

 $5.$ $\boxed{\text{MULTI}}$ Single Ĭ. $^{\prime}$

An $n \times k$ matrix A has the following kernel:

$$
\ker(A) = \operatorname{span}\left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \right\}
$$

What is the dimension of its image $\dim(\text{im}(A))$?

(a) dim $(\text{im}(A)) = n - 3$ (b) dim(im(A)) = $k-1$ (c) dim $(\text{im}(A)) = k - 2$ (d) dim(im(A)) = n

Ĭ.

 $6.$ MULTI Single

 \overline{a} Given the matrix $A = B \cdot C \cdot D$ find its inverse A^{-1} .

- (a) $A^{-1} = C^{-1}D^{-1}B^{-1}$ (b) $A^{-1} = D^{-1}B^{-1}C^{-1}$ (c) $A^{-1} = D^{-1}C^{-1}B^{-1}$ (d) $A^{-1} = B^{-1}C^{-1}D^{-1}$
- $7.$ $\boxed{\text{MULTI}}$ $\boxed{\text{Single}}$ ✂ ✁ Ĭ.

A linear map $D : \mathbb{R}^2 \to \mathbb{R}^2$ is given by the following matrix in the standard basis: $D_{\rm st} =$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. How is the map represented in the following basis: $\begin{Bmatrix} 1 \\ \sqrt{1} \end{Bmatrix}$ 2 $\lceil 1 \rceil$ 1 1 , $\frac{1}{\sqrt{2}}$ $\overline{2}$ $\lceil 1 \rceil$ $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$? (a) $D_{\text{new}} =$ $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ (b) $D_{\text{new}} =$ $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

- (c) $D_{\text{new}} =$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (d) $D_{\text{new}} =$ $\begin{bmatrix} 1 & 0 \end{bmatrix}$ $0 -1$ 1
- 8. **MULTI** Single Ĭ. $^{\prime}$

Consider the standard basis in \mathbb{R}^3 : $\{e_x, e_y, e_z\}.$

Which of the following matrices represents a counterclockwise rotation around the z-axis?

(a)
$$
\mathcal{R} = \begin{bmatrix} \cos \varphi & 0 & \sin \varphi \\ 0 & 1 & 0 \\ \sin \varphi & 0 & \cos \varphi \end{bmatrix}
$$

\n(b) $\mathcal{R} = \begin{bmatrix} 1 & 0 & -\sin \varphi \\ \cos \varphi & 1 & \cos \varphi \\ \sin \varphi & 0 & 1 \\ \cos \varphi & -\sin \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix}$
\n(c) $\mathcal{R} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix}$
\n(d) $\mathcal{R} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 0 \end{bmatrix}$

 $9.$ MULTI ✄ Single Ĭ.

Consider the space of 2×2 Hermitian Matrices $H_2(\mathbb{C})$ (the space of 2×2 matrices A with complex entries such that $A^{\dagger} := \overline{A}^T = A$. Which of the following is true?

- (a) $H_2(\mathbb{C})$ is a vector space over the field of complex numbers, but not over the real numbers.
- (b) $H_2(\mathbb{C})$ is not a vector space over the field of real numbers or complex numbers.
- (c) $H_2(\mathbb{C})$ is a vector space over the field of real numbers, but not over the complex numbers.
- (d) $H_2(\mathbb{C})$ is a vector space over the field of real numbers and over the complex numbers.
- $10.$ $\boxed{\text{MULTI}}$ $\boxed{\text{Single}}$

Consider the vector space $P_2(\mathbb{R}) = \{p(x) \mid p(x) \text{ is a quadratic polynomial}\}.$ Is the derivative operator $\mathcal{D}: p(x) \mapsto p'(x) \equiv \frac{d}{dx}$ dx $p(x)$ a linear operator? If it is, how is it represented in the standard basis $\mathfrak{B} = \{1, x, x^2\}$

Hint: You can express a polynomial $ax^2 + bx + c$ as $\sqrt{ }$ $\overline{}$ c b a 1 $\overline{1}$

- (a) \mathcal{D} is a linear operator with $[\mathcal{D}]_{\mathfrak{B}} =$ $\sqrt{ }$ $\overline{}$ 0 1 0 0 0 2 0 0 0 1 \perp
- (b) \mathcal{D} is not a linear operator

(c)
$$
\mathcal{D}
$$
 is a linear operator with $[\mathcal{D}]_{\mathfrak{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
(d) \mathcal{D} is a linear operator with $[\mathcal{D}]_{\mathfrak{B}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Total of marks: 10