Week 5: Kernel, range, rank-nullity theorem, matrix inverse

1. Multi Single Find the inverse of $A = \begin{bmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ 1 & 0 & 1 \\ 2 & \frac{1}{2} & 1 \end{bmatrix}$. (a) $A^{-1} = \begin{bmatrix} -2 & -3 & 2 \\ 4 & 4 & 2 \\ 2 & 4 & -2 \end{bmatrix}$ (b) $A^{-1} = \begin{bmatrix} -2 & -3 & 2 \\ 4 & 4 & 2 \\ 2 & -4 & -2 \end{bmatrix}$ (c) the inverse does not exist (d) $A^{-1} = \begin{bmatrix} -2 & -3 & 2 \\ 4 & 4 & -2 \\ 2 & 4 & -2 \end{bmatrix}$ MULTI Single 2. Find the inverse of $A = \begin{bmatrix} 3.5 & -1 & 0.5 \\ 10 & -3 & 2 \\ 2.5 & -1 & 1.5 \end{bmatrix}$. (a) $A^{-1} = \begin{bmatrix} 0 & 1 & 1 \\ 2 & -1 & -2 \\ -1 & 1 & -2 \end{bmatrix}$ (b) $A^{-1} = \begin{bmatrix} 0 & 1 & 1 \\ 2 & -1 & -2 \\ 1 & 1 & 2 \end{bmatrix}$ (c) the inverse does not exist (d) $A^{-1} = \begin{bmatrix} 0 & 1 & 1 \\ 2 & -1 & -2 \\ 1 & 1 & 2 \end{bmatrix}$ 3. MULTI Single Find the inverse of $A = \begin{vmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$. (a) $A^{-1} = \begin{bmatrix} 0.5 & -0.5 & 0.5 \\ -0.5 & 0 & 0.5 \\ 0.5 & -0.5 & 0 \end{bmatrix}$ (b) $A^{-1} = \begin{bmatrix} 0 & -0.5 & 0.5 \\ -0.5 & 0 & 0.5 \\ 0.5 & 0.5 & 0 \end{bmatrix}$ (c) $A^{-1} = \begin{bmatrix} 0.5 & -0.5 & 0 \\ -0.5 & 0 & 0.5 \\ 0.5 & 0.5 & 0 \end{bmatrix}$ (d) the inverse does not exist

4. MULTI Single

Find the kernel of
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
.
(a) $\ker(A) = \operatorname{span} \left\{ \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} \right\}$
(b) $\ker(A) = \operatorname{span} \left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \right\}$
(c) $\ker(A) = \operatorname{span} \left\{ \begin{bmatrix} -2 \\ 1 \\ -1 \end{bmatrix} \right\}$
(d) $\ker(A) = \operatorname{span} \left\{ \begin{bmatrix} -2 \\ 1 \\ -1 \end{bmatrix} \right\}$

5. Multi Single

An $n \times k$ matrix A has the following kernel:

$$\ker(A) = \operatorname{span}\left\{ \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} -2\\1\\0 \end{bmatrix} \right\}$$

What is the dimension of its image $\dim(\operatorname{im}(A))$?

(a) $\dim(\operatorname{im}(A)) = n - 3$ (b) $\dim(\operatorname{im}(A)) = k - 1$ (c) $\dim(\operatorname{im}(A)) = k - 2$ (d) $\dim(\operatorname{im}(A)) = n$

6. MULTI Single

Given the matrix $A = B \cdot C \cdot D$ find its inverse A^{-1} .

- (a) $A^{-1} = C^{-1}D^{-1}B^{-1}$ (b) $A^{-1} = D^{-1}B^{-1}C^{-1}$ (c) $A^{-1} = D^{-1}C^{-1}B^{-1}$ (d) $A^{-1} = B^{-1}C^{-1}D^{-1}$
- 7. Multi Single

A linear map $D : \mathbb{R}^2 \to \mathbb{R}^2$ is given by the following matrix in the standard basis: $D_{\text{st}} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. How is the map represented in the following basis: $\left\{ \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$? (a) $D_{\text{new}} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$ (b) $D_{\text{new}} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

- (c) $D_{\text{new}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (d) $D_{\text{new}} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
- 8. MULTI Single

Consider the standard basis in \mathbb{R}^3 : $\{e_x, e_y, e_z\}$.

Which of the following matrices represents a counterclockwise rotation around the z-axis?

(a)
$$\mathcal{R} = \begin{bmatrix} \cos \varphi & 0 & \sin \varphi \\ 0 & 1 & 0 \\ \sin \varphi & 0 & \cos \varphi \end{bmatrix}$$

(b)
$$\mathcal{R} = \begin{bmatrix} 1 & 0 & -\sin \varphi \\ \cos \varphi & 1 & \cos \varphi \\ \sin \varphi & 0 & 1 \end{bmatrix}$$

(c)
$$\mathcal{R} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(d)
$$\mathcal{R} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

9. MULTI Single

Consider the space of 2×2 Hermitian Matrices $H_2(\mathbb{C})$ (the space of 2×2 matrices A with complex entries such that $A^{\dagger} := \overline{A}^T = A$). Which of the following is true?

- (a) $H_2(\mathbb{C})$ is a vector space over the field of complex numbers, but not over the real numbers.
- (b) $H_2(\mathbb{C})$ is not a vector space over the field of real numbers or complex numbers.
- (c) $H_2(\mathbb{C})$ is a vector space over the field of real numbers, but not over the complex numbers.
- (d) $H_2(\mathbb{C})$ is a vector space over the field of real numbers and over the complex numbers.
- 10. MULTI Single

Consider the vector space $P_2(\mathbb{R}) = \{p(x) \mid p(x) \text{ is a quadratic polynomial}\}.$ Is the derivative operator $\mathcal{D} : p(x) \mapsto p'(x) \equiv \frac{\mathrm{d}}{\mathrm{d}x}p(x)$ a linear operator? If it is, how is it represented in the standard basis $\mathfrak{B} = \{1, x, x^2\}$

Hint: You can express a polynomial $ax^2 + bx + c$ *as* $\begin{bmatrix} c \\ b \\ a \end{bmatrix}$

- (a) \mathcal{D} is a linear operator with $[\mathcal{D}]_{\mathfrak{B}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$
- (b) \mathcal{D} is not a linear operator

(c)
$$\mathcal{D}$$
 is a linear operator with $[\mathcal{D}]_{\mathfrak{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
(d) \mathcal{D} is a linear operator with $[\mathcal{D}]_{\mathfrak{B}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Total of marks: 10