Week 6: The determinant

1. MULTI Single

A 4×4 invertible matrix A has determinant $det(A) = \frac{1}{2}$. Find det(2A), det(-A), $det(A^2)$, and $det(A^{-1})$.

(a)
$$\det(2A) = 2$$
, $\det(-A) = \frac{1}{2}$, $\det(A^2) = \frac{1}{2}$, $\det(A^{-1}) = \frac{1}{2}$
(b) $\det(2A) = 1$, $\det(-A) = -\frac{1}{2}$, $\det(A^2) = \frac{1}{4}$, $\det(A^{-1}) = 2$
(c) $\det(2A) = 1$, $\det(-A) = \frac{1}{2}$, $\det(A^2) = \frac{1}{2}$, $\det(A^{-1}) = \frac{1}{16}$
(d) $\det(2A) = 8$, $\det(-A) = \frac{1}{2}$, $\det(A^2) = \frac{1}{4}$, $\det(A^{-1}) = 2$

2. MULTI Single

A rotation about the y-axis by an angle θ in \mathbb{R}^3 is described by the matrix

$$R_y(\theta) = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}.$$

What is $\det(R_y(\theta))$?

- (a) -1(b) 1 (c) $\cos^2(\theta) - \sin^2(\theta)$ (d) 0
- 3. MULTI Single

What is the volume of the parallelopiped spanned by the vectors $v_1 = (3, 2, 1)$, $v_2 = (0, 3, 2), v_3 = (0, 0, 3)$?

- (a) 12
- (b) 27
- (c) 0
- (d) 9
- 4. MULTI Single

What is the determinant of the $n \times n$ matrix

$$U = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 2 & 2 & \cdots & 2 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & (n-1) & (n-1) \\ 0 & \cdots & 0 & 0 & n \end{bmatrix}.$$

(a) n
(b) $\frac{n(n+1)(2n+1)}{6}$
(c) $n!$

(d) 0

5.MULTI Single

> Consider the $n \times n$ matrix C_n with entries which simply count from 1 to n^2 . For example $C_3 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$. What is the determinant of C_n ?

- (a) $\det(C_1) = 1$, $\det(C_2) = 2$, $\det(C_n) = n$ for n > 2.
- (b) $\det(C_1) = 1$, $\det(C_2) = -2$, $\det(C_n) = 0$ for n > 2.
- (c) $\det(C_n) = (-1)^{n+1}n$

(d)
$$\det(C_1) = 1, \det(C_2) = -2, \det(C_3) = 0, \det(C_n) = -n^2 \text{ for } n > 3.$$

6. MULTI Single

Let u = (2, 3, 5), v = (-1, 4, -10), w = (1, -2, -8) be vectors in \mathbb{R}^3 . Use facts about the determinant to check whether u, v, w are linearly independent.

- (a) The vectors are linearly independent.
- (b) The vectors are not linearly independent.
- (c) Cannot be determined from the information given.
- 7. MULTI Single

First recall that in general $\det(A+B) \neq \det(A) + \det(B)$. Now let $p, q, r, s \in \mathbb{R}$ and consider the matrices

$$A = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$$
 and $B = \begin{bmatrix} -r & -s \\ p & q \end{bmatrix}$.

Compute det(A) + det(B) and det(A + B). If these values are equal what is the common value? If not, what is the difference det(A + B) - (det(A) + det(B))?

- (a) $\det(A+B) \det(A) \det(B) = -rq$ (b) det(A+B) - det(A) - det(B) = rq(c) $\det(A) + \det(B) = \det(A + B) = 2(ps - qr).$ (d) det(A + B) - det(A) - det(B) = -2ps
- 8. MULTI Single

Consider the matrix

$$H = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix}.$$

What are the cofactors $C_{1,1}$ and $C_{1,2}$? What is det(H)?

- (a) $C_{1,1} = 5, C_{1,2} = -2, \det(H) = 0$ (b) $C_{1,1} = 5, C_{1,2} = 2, \det(H) = 8$ (c) $C_{1,1} = 2, C_{1,2} = 2, \det(H) = 8$
- (d) $C_{1,1} = 5, C_{1,2} = -2, \det(H) = 8$

9. MULTI Single

Consider the matrix

$$H = \begin{bmatrix} 2 & 5 & -3 & -2 \\ -2 & -3 & 2 & -5 \\ 1 & 3 & -2 & 0 \\ -1 & 6 & 4 & 0 \end{bmatrix}$$

What are the cofactors $C_{3,4}$ and $C_{4,4}$?

(a) $C_{3,4} = -27, C_{4,4} = -1$ (b) $C_{3,4} = 27, C_{4,4} = 1$ (c) $C_{3,4} = -27, C_{4,4} = 1$ (d) $C_{3,4} = 27, C_{4,4} = -1$

10. MULTI Single

Consider the matrix

$$H = \begin{bmatrix} -\lambda & 2 & 7 & 12\\ 3 & 1-\lambda & 2 & -4\\ 0 & 1 & -\lambda & 7\\ 0 & 0 & 0 & 2-\lambda \end{bmatrix}$$

where λ is an unknown. Find the $C_{4,4}$ cofactor and compute the determinant of the matrix.

(a) $\det(H) = \lambda^4 + 8\lambda^3 + 3\lambda + 5$ (b) $\det(H) = \lambda^4 + \lambda^3 + 6\lambda^2 + 4$ (c) $\det(H) = \lambda^4 + \lambda^3 + \lambda^2 - 5\lambda + 42$ (d) $\det(H) = (2 - \lambda)C_{4,4} = \lambda^4 - 3\lambda^2 - 6\lambda^2 - 5\lambda + 42$

Total of marks: 10