
Elements of Linear Algebra Week 13 Exercises

Week 13: Singular Value Decomposition (SVD)

1. multi
�� ��Single

Find the singular values of the matrix

M =


1

2

1

2
−1 1

−1

2
−1

2

 .

(a) The singular values don’t exist because the matrix is not square.
(b) The singular values are 2 and 1.
(c) The singular values are 4 and 1.
(d) The singular values are

√
2 and 1.

2. multi
�� ��Single

Find the singular values of the matrix

M =

[
3 2 2
2 3 −2

]
.

(a) The singular values are 25 and 9.
(b) The singular values are 5 and 3.
(c) The singular values don’t exist because the matrix is not square.
(d) The singular values are

√
5 and

√
3.

3. multi
�� ��Single

Consider the matrix

A =

[
3 0
4 5

]
and the matrices

U =
1√
10

[
1 −3
3 1

]
, Σ =

[
3
√
5 0

0
√
5

]
, V =

1√
2

[
1 −1
1 1

]
.

Is the decomposition A = UΣV T a valid singular value decomposition? If not, why
not?

(a) The decomposition is not valid because U is not orthogonal.
(b) The SVD decomposition is valid.
(c) The decomposition is not valid as the singular values are incorrect.
(d) The decomposition is not valid because V is not orthogonal.

4. multi
�� ��Single

Consider the matrix

A =

 2 2 2 2
17/10 1/10 −17/10 −1/10
3/5 9/5 −3/5 −9/5

 .
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A has a singular value decomposition A = UΣV ∗ with

U =
1

5

5 0 0
0 3 −4
0 4 3

 , Σ =

4 0 0 0
0 3 0 0
0 0 2 0

 , V ∗ =
1

2


1 1 1 1
1 1 −1 −1
−1 1 1 −1
1 −1 1 −1

 .

Let

b =

10
0

 .

Find all solutions x to the linear equations Ax = b.

(a) x =
1

8
(1, 1, 1, 1)T .

(b) There are no solutions to Ax = b.

(c) x =
1

8
(1, 1, 1, 1)T + λ(1,−1, 1,−1) for any λ ∈ R.

(d) x =
1

8
(1, 1, 1, 1)T + λ(1,−1,−1,−1) for any λ ∈ R.

5. multi
�� ��Single

Consider the matrix

A =

 2 2 2 2
17/10 1/10 −17/10 −1/10
3/5 9/5 −3/5 −9/5

 .

A has a singular value decomposition A = UΣV ∗ with

U =
1

5

5 0 0
0 3 −4
0 4 3

 , Σ =

4 0 0 0
0 3 0 0
0 0 2 0

 , V ∗ =
1

2


1 1 1 1
1 1 −1 −1
−1 1 1 −1
1 −1 1 −1

 .

What are the rank and the nullity of A, i.e., what are the dimensions of the range
and kernel of A?

(a) rank(A) = 3, nullity(A) = 1.
(b) rank(A) = 4, nullity(A) = 3.
(c) rank(A) = 3, nullity(A) = 4.
(d) rank(A) = 3, nullity(A) = 0.

6. multi
�� ��Single

Consider the matrix

A =

 0 −1
1 1
−1 0

 .

A has a singular value decomposition A = UΣV ∗ with

U =
1√
6

−1 −
√
3

√
2

2 0
√
2

−1
√
3

√
2

 , Σ =

√3 0
0 1
0 0

 , V =
1√
2

[
1 −1
1 1

]
.
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Let furthermore

b =

23
4

 .

Solve the least square problem for Ax = b using the singular value decomposition
of A, i.e., find the vector x that makes ∥Ax− b∥ minimal.

(a) x1 = −1, x2 = 1.
(b) x1 = −

√
3, x2 = 1.

(c) x1 = −4

3
, x2 = −7

3
.

(d) x1 = −4, x2 = −7.

7. multi
�� ��Single

Let A be an m× n matrix with m ̸= n. Which of the following statements is false?

(a) The matrix A∗A is Hermitian.
(b) The matrix AA∗ is positive semidefinite.
(c) The matrix AA∗ is Hermitian.
(d) The matrix AA∗ is an n× n matrix.

8. multi
�� ��Single

Let A be an m× n matrix with m > n. Which of the following statements is false?

(a) A might have n non-zero singular values.
(b) Some of the singular values of A might be zero.
(c) A might have m non-zero singular values.
(d) None of the singular values of A are negative.

9. multi
�� ��Single

Let A be an m×n matrix with rank r and singular value decomposition A = UΣV ∗

(with singular values in descending order). Let u1, . . . , um be the columns of U , and
v1, . . . , vn the columns of V . Which of the following statements is false?

(a) {vr+1, . . . , vn} is an orthonormal basis for Ker(A).
(b) span(vr+1, . . . , vn) = Ker(A).
(c) span(v1, . . . , vr) = Ran(A)
(d) span(u1, . . . , ur) = Ran(A).

10. multi
�� ��Single

An experiment has collected N = 10 two-dimensional data points, which were col-
lected in the 2× 10 matrix

A =

[
3 −2 −3 −1 −4 3 4 −3 2 1
6 −8 −7 −9 −5 5 9 −6 7 8.

]
.

Note that the averages in both rows are already zero. Use a suitable online calculator
(e.g., Wolfram Alpha) to compute the singular value decomposition of A and identify
the first principal component. Visualize the data for yourself in a two-dimensional
coordinate system to make sure the result makes sense.
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(a) The first principal component is approximately (0.334, 0.943).
(b) The first principal component is approximately 23.916.
(c) The first principal component is approximately (−0.323, 0.843).
(d) The first principal component is approximately (−0.943, 0.334).

Total of marks: 10


