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1. (6 points) Consider the function

fλ(x) = x2 + 2λx− λ,

with parameter λ ∈ R. Which of the following is true?

A. For λ > 0, the equation fλ(x) = 0 has no real solution.

B. * For λ < −1, the equation fλ(x) = 0 has two real solutions.

C. For λ = 2, the equation fλ(x) = 0 has exactly one real solution.

D. * The range of fλ(x) is the interval [−λ2 − λ,∞).

E. The range of fλ(x) is the interval [0,∞).

F. The domain of fλ(x) is the interval [−1,∞).

2. (6 points) Consider the vectors

a =

1
3
2

 , and b =

−2
1
−2

 .

Which of the following statements are true?

A. * The vectors a and b are NOT orthogonal.

B. * The cross product of a and b is a× b =

−8
−2
7

.

C. The length of a is |a| =
√
6.

D. The cross product of a and b is a× b =

 4
−2
−2

.

E. The vectors a and b are orthogonal.

F. * The length of a is |a| =
√
14.
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3. (4 points) Consider the point y = (6, 5, 1) and the line

x =

4
3
5

+ λ

2
3
2

 .

Which of the following describes the plane that contains that line and the point y?

A.

4
3
5

+ λ

2
3
2

+ µ

1
3
7

.

B.

4
3
5

+ λ

8
8
3

.

C.

4
3
5

+ λ

2
3
2

+ µ

 3
2
−2

.

D.

4
3
5

+ λ

2
3
2

+ µ

2
4
6

.

E.

4
3
5

+

6
5
1

+ λ

2
3
2

.

F. *

4
3
5

+ λ

2
3
2

+ µ

 2
2
−4

.

4. (6 points) Which of the following statements are true?

A. The vectors

1
0
0

,

0
1
0

,

0
0
1

,

2
2
2

 are a basis of R3.

B. If the two vectors a and b are linearly independent, then they are a basis of R3.

C. * The vectors

1
0
0

,

0
1
0

,

2
2
2

 are a basis of R3.

D. The vectors

1
2
3

 and

2
4
6

 are linearly independent.

E. * The vectors

1
2
3

 and

2
4
7

 are linearly independent.

F. The vectors

1
1
1

,

0
1
0

,

2
2
2

 are a basis of R3.
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5. (4 points) Let

A =

(
1 2 3
4 5 6

)
, B =

 1 2
2 1
−1 1

 .

Calculate the matrix product AB.

A.

(
1 2
2 1

)
.

B. *

(
2 7
8 19

)
.

C.

(
1 2
4 5

)
.

D.

(
8 7
20 19

)
.

E.

(
2 4
5 17

)
.

F.

(
2 8
7 19

)
.

6. (4 points) Which of the following describes the solution(s) to the system of linear
equations

x1 + x2 + 3x3 = 1,

x2 + x3 = 2,

−x2 + x3 = 2.

A. The unique solution is x = (10, 2, 7).

B. The system of equations has no solutions.

C. * The unique solution is x = (−5, 0, 2).

D. The system of equations has infinitely many solutions x = (8, 2, 1) + λ(2, 5, 2).

E. The unique solution is x = (0, 0, 1).

F. The system of equations has infinitely many solutions x = (1, 2, 0) + λ(2, 1,−1).
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7. (6 points) A system of linear equations Ax = b has been brought, through Gaussian
elimination, into the reduced row-echelon form (in augmented matrix notation)

1 0 3 2
0 1 5 3
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣
1
2
0
0

 .

Which of the following statements are true?

A. The nullity of A is 3.

B. The nullity of A is 1.

C. * The general solution is x =


1
2
0
0

+ λ


3
5
−1
0

+ µ


2
3
0
−1

, for λ, µ ∈ R.

D. The general solution is x =


1
2
0
0

+ λ


0
0
1
−1

, for λ ∈ R.

E. The general solution is x =


1
2
0
0

+ λ


3
5
0
0

+ µ


2
3
0
0

, for λ, µ ∈ R.

F. * The nullity of A is 2.

8. (4 points) Compute the determinant of the matrix

A =

4 1 −2
2 1 4
2 2 1

 .

A. * detA = −26.

B. detA = 34.

C. detA = 13.

D. detA = −6.

E. detA = 1.

F. detA = 0.
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9. (4 points) Find the inverse of the matrix

A =

 1 −1 1
−1 1 1
1 1 1

 .

A. A−1 =

 0 −0.5 0.5
−0.5 0 0.5
0.5 0.5 0.5

.

B. A−1 =

0.5 −0.5 0.5
0 0 0.5
0.5 0.5 0

.

C. A−1 =

1 −1 0
0 0 1
1 0 −1

.

D. A−1 =

 0.5 0 0.5
−0.5 0 0.5
0.5 0.5 0.5

.

E. * A−1 =

 0 −0.5 0.5
−0.5 0 0.5
0.5 0.5 0

.

F. The matrix A is not invertible.

10. (6 points) Consider the matrix

A =

(
0 1
1 0

)
.

Which of the following is true?

A. The matrix A has only the one eigenvalue 1.

B. * The vector (2, 2)T is an eigenvector of A.

C. * The eigenvalue 1 of A has geometric multiplicity 1.

D. * The matrix A has the two eigenvalues 1 and −1.

E. The eigenvalue 1 of A has geometric multiplicity 2.

F. The vector (1, 2)T is an eigenvector of A.
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11. (6 points) Let A be an n× n matrix. Which of the following statements are true?

A. A has exactly n distinct eigenvalues.

B. * The determinant of A is given by the product of all eigenvalues, including their
multiplicities.

C. The determinant of A is given by the sum of all eigenvalues, including their multi-
plicities.

D. * If λ ̸= 0 is an eigenvalue of A, and A is invertible, then λ−1 is an eigenvalue of A−1.

E. If λ ̸= 0 is an eigenvalue of A, then λ−1 is an eigenvalue of A as well.

F. All eigenspaces of A are one-dimensional

12. (6 points) Consider the matrix

A =

(
i 1
1 i

)
.

Which of the following is true?

A. * A is normal.

B. A is Hermitian.

C. A is anti-Hermitian.

D. A is unitary.

E. * A is invertible.

F. * A is diagonalizable.

13. (6 points) Suppose U is a unitary n× n matrix. Which of the following is true?

A. The eigenvalues of U are either −1, 0, or 1.

B. U is positive definite.

C. * | detU | = 1.

D. All eigenvalues of U are equal to 1.

E. * U is normal.

F. * |Ux| = |x| for all vectors x ∈ Cn.
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14. (4 points) Compute the LU decomposition of the matrix

A =

(
1 4
2 6

)
such that all diagonal entries of L are one. What are the diagonal entries of U?

A. U has diagonal entries −1, 2.

B. U has diagonal entries −1,−2.

C. U has diagonal entries −1, 1.

D. U has diagonal entries 1, 0.

E. U has diagonal entries 1, 1.

F. * U has diagonal entries 1,−2.

15. (4 points) Consider the matrix

A =


1 3 6
1 2 2
1 3 8
1 2 4

 .

Which of the following is a valid QR-decomposition (for 4× 3 matrices)?

A. * Q = 1
2


1 1 −1 −1
1 −1 −1 1
1 1 1 1
1 −1 1 −1

 , R =


2 5 10
0 1 4
0 0 2
0 0 0

.

B. None of the options are valid QR decompositions.

C. Q = 1
2


1 1
1 1
1 1
−1 1

 , R =

(
2 5 10
0 1 2

)
.

D. Q = 1
2


1 1 −1 1
1 1 −1 1
1 −1 1 1
1 −1 1 1

 , R =


0 0 0
0 0 2
0 1 4
2 5 10

.

E. Q = 1
2


1 1
1 −1
1 1
1 −1

 , R =

(
2 5 10
0 1 2

)
.

F. Q = 1
2


−1 1 −1 −1
−1 1 1 1
1 1 −1 1
1 −1 1 −1

 , R =


2 5 10
0 1 4
0 0 2
0 0 0

.
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16. (6 points) Consider them×nmatrix A and its singular value decomposition A = UΣV ∗.
Which of the following statements are true?

A. Σ is a Hermitian m× n matrix.

B. * V is a unitary n× n matrix.

C. * U is a unitary m×m matrix.

D. The determinant of A is the sum of all singular values squared.

E. * All singular values of A are positive or zero.

F. U is a unitary n× n matrix.
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17. (12 points)

Find the general solution to the system of linear equations

x1 + 3x2 + x3 + x4 = 2,

2x1 + 6x2 − x4 = 1.

(Here, you need to write down all steps of your solution in order to receive full points.)

Solution: We use Gaussian elimination in the augmented matrix notation. We find(
1 3 1 1
2 6 0 −1

∣∣∣∣ 21
)

−2R1 + R2 → R2 :

(
1 3 1 1
0 0 −2 −3

∣∣∣∣ 2
−3

)
1

2
R2 + R1 → R1 and− 1

2
R2 → R2

(
1 3 0 −1

2

0 0 1 3
2

∣∣∣∣ 1
2
3
2

)
Then we can introduce two extra zero rows, which yields:

1 3 0 −1
2

0 0 0 0
0 0 1 3

2

0 0 0 0

∣∣∣∣∣∣∣∣
1
2

0
3
2

0


From this reduced row-echelon form we can immediately read off a parametrization of
the general solution, namely

x =


1
2

0
3
2

0

+ λ


3
−1
0
0

+ µ


−1

2

0
3
2

−1

 .
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18. (12 points)

Compute all eigenvalues, singular values, and eigenvectors of the matrix

A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .

(Here, you need to write down all steps of your solution in order to receive full points.)
Is the matrix A diagonalizable? (Here, you get full point only if you justify your answer
correctly.)

Solution: To find the eigenvalues we need to solve det(A− λ) = 0. Here, we find

A− λ =


−λ 1 0 0
0 −λ 2 0
0 0 −λ 3
0 0 0 −λ

 .

and a Laplace expansion yields

det


−λ 1 0 0
0 −λ 2 0
0 0 −λ 3
0 0 0 −λ

 = λ4.

Hence, there is only one eigenvalue λ = 0. The eigenvectors are solutions to

Ax = 0 ⇒


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0



x1

x2

x3

x4

 =


0
0
0
0

 .

Hence, the solution is

x = λ


1
0
0
0


for any λ ̸= 0. To find the singular values, we compute

ATA =


0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0



0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 =


0 0 0 0
0 1 0 0
0 0 4 0
0 0 0 9


Hence, the singular values are 3, 2, 1, and 0.
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19. (12 points) Diagonalize the matrix

A =

(
11 −4
−2 13

)
.

(Here, you need to write down all steps of your solution in order to receive full points.)

Solution: The characteristic equation reads

0 = det(A− λ) = det

(
11− λ −4
−2 13− λ

)
= (11− λ)(13− λ)− 8 = λ2 − 24λ+ 135.

Hence the eigenvalues are

λ± = 12±
√
144− 135 = 12±

√
9 = 12± 3,

i.e., λ+ = 15 and λ− = 9.

For λ+ = 15, any eigenvalue is solution to

0 =

(
11− 15 −4
−2 13− 15

)(
x1

x2

)
=

(
−4 −4
−2 −2

)(
x1

x2

)
.

Hence, we can choose for example x+ = (1,−1)T as a normalized eigenvector.

For λ− = 9, any eigenvalue is solution to

0 =

(
11− 9 −4
−2 13− 9

)(
x1

x2

)
=

(
2 −4
−2 4

)(
x1

x2

)
.

Hence, we can choose for example x+ = (2, 1)T as a normalized eigenvector.

The diagonalizing matrix is thus

V =

(
1 2
−1 1

)
,

and its inverse is

V −1 =
1

3

(
1 −2
1 1

)
.

Thus, a complete diagonalization reads

A =

(
11 −4
−2 13

)
=

(
1 2
−1 1

)
︸ ︷︷ ︸

V

(
15 0
0 9

)
︸ ︷︷ ︸

Λ

1

3

(
1 −2
1 1

)
︸ ︷︷ ︸

V −1

.
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