Calculus and Linear Algebra I
Jacobs University Bremen ‘ , JACOBS Final Exam

Fall 2022 UNIVERSITY Time: 120 minutes

Name: Matriculation ID:

INSTRUCTIONS
e Make sure to write your name and ID on the first page and every page thereafter.

® The question booklet consists of 14 pages. Make sure you have all of them.

¢ Keep quiet during the exam. For assistance, raise your hand and a proctor will come
to see you.

o Answer the questions in the spaces provided after each question. If you run out of

room for an answer, continue on the back of the page.
e The mark of each question is printed next to it.

¢ Use of mobile phones or other unauthorized electronic devices or material in the exam
room is prohibited. No mathematical calculators are allowed during the exam.

Make sure you read and sign the Declaration Of Academic Integrity shown below.

Declaration of Academic Integrity

By signing below, I pledge that the answers of this exam are my own work
without the assistance of others or the usage of unauthorized material or

information.

Signature: ................. . P I

Good luck!
Dr. Stephan Juricke, Prof. Dr. Séren Petrat
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1. (6 points) Let p(z) be a polynomial of degree n with real coefficients, i.e., p(z) =
> heo cxz®, with ¢, € Rfor all k =0, ... ,n, and ¢, # 0. Which of the following is true?
A. All roots are real numbers.
The roots can be real or complex numbers.
@ If z is a root, then its complex conjugate z* is also a root.
D. If n is even, then p(z) must have one real root.
E. p(z) factorizes as p(z) = a,(z — 21)(z — 23) - -+ (z — 2,) with all z; real.

@p(w) factorizes as p(z) = an(® — 21)(z — 25) - - - (T — 2) and a,(—21)(~2) - -- (—z) = .

2. (6 points) Consider the polynomial
p(z) = 22 — 2 z + 1,

with some parameter A € R. Which of the following is true?

A. For any —1 < X < 1 the roots are real numbers.
@ For any A < —1 and A > 1 the roots are real numbers.
C. For any —2 < X < 2 the roots are real numbers.

D. For A > 0 the roots are positive, and for A < 0 the roots are negative.
@For A = 15, we have p(z) > 0 for all z € R.
F. For A = &, we have p(z) < 0 for all z € R.

3. (6 points) Consider the function

f(z) =z sin (é) for z # 0,

and f(0) := 0. Which of the following is true?

f is continuous at 0.

B. f is not continuous at 0.
@ 1@ < Jal.

) lim, o f(z) = 0.

E. lim, o f(z) = 1.

F. lim,,, f(z) = —1.
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4. (6 points) What are necessary or sufficient conditions for f : [a,b] — R to have a minimum
at ¢ € (a,b)?
A. f'(z) =0 for all z € (a,b).

f'le)=0.

C. f(e)=0.

® 0 o
E. f"(c) <.
F. f'(c) > 0.

5. (4 points) We want to build a fence around a rectangular field. 500 metres of fencing
material are available and the field is on one side bounded by a building so that this side
won’t need any fencing. What is the largest area A that can be fenced in?

A. None of the given options.
B. A = 500m?
C. A = 50000m?
A = 31250m?
E. A= 12500m?
F. A = 25000m?2

6. (4 points) What is the derivative of f(z) = sin(e?**") with respect to z, where ¢ € R is
some constant?
A. f'(z) = €% cos(e2”)
B. f'(z) = 2cxe®® sin(e?”)
@ f(x) = dcze®™ cos(e?e’)
D. f'(z) = cos(4cx?e?=")
E. f'(z) = cxe®™ cos(e2=")

F. f(z) = 2e* cos(eX®”)
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1
/ ze® da.
0

7. (4 points) Compute the integral

A e
B. 2e.
C.e—-1.
D. e~
E. 2

o

8. (6 points) Consider the improper integral

for different parameters o € R.

For o = 1 the improper integral is infinite.
B. For a = 1 the improper integral is finite and its value is 1.
C. For a = 1 the improper integral is finite and its value is In(1+ a).
D. For a > 1 the improper integral is infinite.

@ For oo > 1 the improper integral is finite and its value is ﬁ

F. For a > 1 the improper integral is finite and its value is In c.

9. (4 points) What is the solution to the differential equation

dy
—= — _3yt
at y

with initial condition y(0) = 17?

A y(t) = €.
B. y(t) =e*
©) y(t) = e 2
D. y(t) = e *.
E. y@t)=e¥+1
F. y(t) = e 34,
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10. (4 points) What is the scalar product between u = (2,-3,1)7 and v = (1,4,5)7?
A u-v=5

B.u-v=-3
@u-v=—5
D.u-v=2
E.u-v=-6
F.u-v=-10

11. (4 points) Calculate AT - B - C with

(4 4 (4 10
A

Vi ® | ]
o [¢ w0 o [2 4

4 10 4 —2

10 — 9 —9
g |10 ~10 F.

4 4 —4

12. (6 points) Which of the following is true?
{b1,...,bp} with integer n is a basis = all b;, i = 1,...,n are linearly independent.
B. u-v=0 = u is parallel to v.
C. wu is perpendicular to v = u - v does not exist.
D. uxv=0 = wu and v are linearly independent.
E. u,v are linearly dependent =—> au + vb =0 only if a,b = 0.
@ u, v are linearly independent — aw + vb =0 only if a,b = 0.
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13. (25 points)

We consider the function N

e
z—1

flz) =
(a) What is the domain of the function?
(b) What are the intercepts with the z-axis and with the y-axis?
(c) What are the horizontal asymptotes?
(d) What are the vertical asymptotes?

(e) Compute and analyze the first derivative. In which intervals is the function increasing

or decreasing, what are the local minima or maxima?

(f) Compute and analyze the second derivative. In which intervals is the function concave

up or concave down, what are the points of inflection?

(g) Sketch the function. Your drawing needs to include all the qualitative features of the

g

graph discussed in the questions above.
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14. (25 points)

(a) For a matrix A € M(n x n), give one equivalent statement to " The inverse of A, i.e.,
a matrix A~! such that A='A = 1, exists”.

(b) Find the inverse of

12 0
A=11 1 1 | using row operations as in the lecture.
2 0 -1

(c) Solve the equation Az = b with b= (1,2,1)7.

(d) What are the values for the Rank and Nullity of A? Briefly explain your answer.

S =N

1 4
(e) Now consider the matrix B = | 1 2 |, i.e., we have changed the last column in A.
2 0

What are the values for the Rank and Nullity of B? Briefly explain your answer.
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